Sulfophosphate Glass Doped with Er3+ and TiO2 Nanoparticles: Thermo-Optical Characterization by Photothermal Spectroscopy
Abstract
:1. Introduction
2. Theory
3. Experimental Part
3.1. Preparation of the Samples
3.2. Methodology
3.3. Photothermal Spectroscopy Setups
4. Results and Discussion
4.1. Transmission Electron Microscopy (TEM)
4.2. Thermal Characterization
4.3. Optical Properties
4.4. TLS Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dousti, M.R.; Raja, J.A. Spectroscopic properties of Tb3+ doped lead zinc phosphate glass for green solid-state laser. J. Non. Cryst. 2015, 420, 21–25. [Google Scholar] [CrossRef]
- Jha, K.; Jayasimhadri, M. Structural and emission properties of Eu3+ doped alkaline earth zinc-phosphate glasses for whithe LED applications. J. Am. Ceram. Soc. 2017, 100, 1402–1411. [Google Scholar] [CrossRef]
- Shoaib, M.; Chanthima, N.; Rooh, G.; Rajaramakrishna, R.; Kaewkhao, J. Physical and luminescence properties of rare earth doped phosphate glasses for solid state lighting applications. J. Thai Interdiscip. Res. 2019, 14, 20–26. [Google Scholar]
- Wang, H.; Batentschuk, M.; Osvet, A.; Pinna, L.; Brabec, C.J. Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications. Adv. Mater. 2011, 23, 2675–2680. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-P.; Wang, C.; Yuan, X.; Zhang, L. Er 3+ -doped Oxyfluorogallate Glass for 2.7 µm Solid-State Lasers. J. Lumin. 2015, 172, 331–334. [Google Scholar] [CrossRef]
- Tabanli, S.; Eryurek, G. Optical investigation of Er3+ and Er3+/Yb3+ doped zinc-tellurite glass for solid-state lighting and optical thermometry. Sens. Actuators A. Phys. 2018, 285, 448–455. [Google Scholar] [CrossRef]
- Taherunnisa, S.K.; KrishnaReddy, D.V.; SambasivaRao, T.; Rudramamba, K.S.; Zhydachevskyy, Y.A.; Suchocki, A.; Piasecki, M.; RamiReddy, M. Effect of up-conversion luminescence in Er 3 + doped phosphate glasses for developing Erbium-Doped Fibre Amplifiers (EDFA) and G-LED’s. Opt. Mater. X 2019, 3, 100034. [Google Scholar]
- Hu, F.; Lu, S.; Jiang, Y.; Wei, R.; Guo, H.; Yin, M. Optical thermometry based on up-conversion luminescence behavior in BaGdF 5: Er 3 þ glass ceramics. J. Lumin. 2020, 220, 116971. [Google Scholar] [CrossRef]
- The, A.C.; Dipole, M.; Dipole, F.E.; Relaxatio, M.P.; Glasses, B.F. Radiative and Non-Radiative Transitions of Rare-Earth Ions in Glasses in Rare Earths; Springer: Berlin, Germany, 1975; pp. 123–175. [Google Scholar]
- Mariselvam, K.; Kumar, R.A.; Rao, V.R. Concentration-dependence and luminescence studies of erbium doped barium lithium fl uoroborate glasses. Opt. Laser Technol. 2019, 118, 37–43. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, R.; Wang, P.; Gan, Z.; Zhang, Y.; Jin, H.; Jian, J.; Xu, J. Investigation of energy transfer mechanisms in rare-earth doped amorphous silica films embedded with tin oxide nanocrystals. Opt. Express 2019, 27, 2783–2791. [Google Scholar] [CrossRef]
- Huang, F.; Liu, X.; Hu, L.; Chen, D. Spectroscopic properties and energy transfer parameters of Er 3 1-doped fluorozirconate and oxyfluoroaluminate glasses. Sci. Rep. 2014, 4, 1–9. [Google Scholar]
- Shen, S.; Jha, A.; Zhang, E.; Wilson, S.J. Compositional effects and spectroscopy of rare earths (Er 3 +, Tm 3 +, and Nd 3 +) in tellurite glasses. C. R. Chim. 2002, 5, 921–938. [Google Scholar] [CrossRef]
- Mariano, D.; José, M.; Bell, V. Frequency upconversion in Er 3 + doped PbO–GeO 2 glasses containing metallic nanoparticles. Appl. Phys. Lett. 2007, 90, 8–10. [Google Scholar]
- Ghoshal, S.K.; Awang, A.; Sahar, M.R.; Arifin, R. Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er 3 þ doped zinc–Sodium tellurite glass. J. Lumin. 2015, 159, 265–273. [Google Scholar] [CrossRef]
- Kassab, L.R.; de Almeida, R.; da Silva, D.M.; de Assumpção, T.A.A.; de Assumpção, C.B. Enhanced luminescence of Tb 3 + / Eu 3 + doped tellurium oxide glass containing silver nanostructures. J. Appl. Phys. 2009, 105, 103505. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, F.; Hussin, R.; Ghoshal, S.K. Tailored optical properties of Dy 3 + doped magnesium zinc sulfophosphate glass: Function of silver nanoparticles embedment. J. Non. Cryst. Solids 2018, 499, 131–141. [Google Scholar] [CrossRef]
- Ahmadi, F.; Ebrahimpour, Z.; Asgari, A.; Ghoshal, S.K. Insights into spectroscopic aspects of Er 3 + doped sulfophosphate glass embedded with titania nanoparticles. Opt. Mater. 2020, 111, 110650. [Google Scholar]
- Ahmadi, F.; Ebrahimpour, Z.; Asgari, A.; El-mallawany, R. Role of silver / titania nanoparticles on optical features of Sm 3 þ doped sulfophosphate glass. Opt. Mater. (Amst.) 2020, 105, 109922. [Google Scholar] [CrossRef]
- Ahmadi, F.; Ebrahimpour, Z.; Asgari, A. Titania nanoparticles embedded Er 3 þ -Sm 3 þ co-doped sulfophosphate glass: Judd-Ofelt parameters and spectroscopic properties enhancement. J. Alloys Compd. 2020, 843, 155982. [Google Scholar] [CrossRef]
- Kim, J.Y.; Mirzaei, A.; Kim, J.H.; Lee, J.H.; Kim, H.W.; Kim, S.S. Incorporation of metal nanoparticles in soda-lime glass sensors for enhancing selective sensing. Sensors Actuat. B Chem. 2019, 296, 126673. [Google Scholar] [CrossRef]
- Garcia, J.A.M.; Bontempo, L.; Gomez-Malagon, L.A.; Kassab, L.R.P. Efficiency boost in Si-based solar cells using tellurite glass cover layer doped with Eu3+ and silver nanoparticles. Opt. Mater. 2019, 88, 155–160. [Google Scholar] [CrossRef]
- Taniguchi, M.M.; Marconi, J.D.; Herculano, L.S.; Belançon, M.P. On the prospects of enhance glass-based devices with silver nanoparticles: The case of Pr3+ doped tellurite-tungstate glasses. J. Alloys Compd 2018, 749, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Babu, P.; Jin, H.; Kesavulu, C.R.; Hyuk, K.; Jayasankar, C.K. Thermal and optical properties of Er 3 + -doped oxyfluorotellurite glasses. J. Lumin. 2009, 129, 444–448. [Google Scholar] [CrossRef]
- Freitas, A.M.; Bell, M.J.V.; Anjos, V.; Pinheiro, A.S.; Dantas, N.O. Thermal Analyzes of Phosphate Glasses doped with Yb 3 + and ZnTe Nanocrystals. J. Lumin. 2015, 169, 353–358. [Google Scholar] [CrossRef]
- Gonçalves, T.S.; Santos, J.F.M.; Sciuti, L.F.; Catunda, T.; De Camargo, A.S.S. Thermo-optical spectroscopic investigation of new Nd 3+-doped fluoro aluminophosphate glasses. J. Alloys Compd. 2018, 732, 887–893. [Google Scholar] [CrossRef]
- Abella, S.; Itzler, O.N.K.; Erhane, A.M.B.; Avid, D.J.; Pence, S.; Ildren, R.I.P.M. Analysis of a thermal lens in a diamond Raman laser operating at 1. 1 kW output power. Opt. Express 2020, 28, 15232–15239. [Google Scholar]
- Cabrera, H.; Matroodi, F.; Cabrera-Díaz, H.D.; Ramírez-Miquet, E.E. Frequency-resolved photothermal lens: An alternative approach for thermal diffusivity measurements in weak absorbing thin samples. Int. J. Heat Mass Transf. 2020, 158, 120036. [Google Scholar] [CrossRef]
- Korte, D.; Cabrera, H.; Toro, J.; Gallardo, P.G.; Leal, C.; Villabona, A.; Franko, M. Optimized frequency dependent photothermal beam deflection spectroscopy. Laser Phys. Lett. 2016, 13, 125701. [Google Scholar] [CrossRef] [Green Version]
- Lima, S.M.; Catunda, T.; Lebullenger, R.; Hernandes, A.C.; Baesso, M.L.; Bento, A.C.; Miranda, L.C.M. Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry. Phys. Rev. B 1999, 60, 15173–15178. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Lowe, R.D.; Snook, R.D. A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chemical Physics 1992, 165, 385–396. [Google Scholar] [CrossRef]
- Marcano, A.; Cabrera, H.; Guerra, M.; Cruz, R.A.; Jacinto, C.; Catunda, T. Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J. Opt. Soc. Am. B 2006, 23, 1408–1413. [Google Scholar] [CrossRef]
- Dolgonos, A.; Mason, T.O.; & Poeppelmeier, K.R. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. J. Solid State Chem. 2016, 240, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, V.; Sakka, S. Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 1996, 79, 1736–1740. [Google Scholar] [CrossRef]
- Salazar, A.; Sánchez-Lavega, A. Thermal diffusivity measurements using linear relations from photothermal wave experiments. Rev. Sci. Instrum. 1994, 65, 2896–2900. [Google Scholar] [CrossRef]
- Da, N.; Grassmé, O.; Nielsen, K.H.; Peters, G.; Wondraczek, L. Formation and structure of ionic (Na, Zn) sulfophosphate glasses. J. Non-Cryst. Solids 2011, 357, 10–2202. [Google Scholar] [CrossRef]
- Massera, J.; Bourhis, K.; Petit, L.; Couzi, M.; Hupa, L.; Hupa, M.; Videau, J.J.; Cardinal, T. Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions. J. Phys. Chem. Solids 2013, 74, 121–127. [Google Scholar] [CrossRef]
- Ismail, S.F.; Sahar, M.R.; Ghoshal, S.K. Physical and absorption properties of titanium nanoparticles incorporated into zinc magnesium phosphate glass. Mater. Charact. 2016, 111, 177–182. [Google Scholar] [CrossRef]
- Jacinto, T.C.C.; Messias, D.N.; Andrade, A.A.; Lima, S.M.; Baesso, M.L. Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses–A review. J. Non-Cryst. Solids 2006, 352, 3582–3597. [Google Scholar] [CrossRef]
- Messias, D.N.; Jacinto, C.; Bell, M.J.V.; Catunda, T. Thermal and Optical Properties of Yb 3 + -and Nd 3 + -Doped Phosphate Glasses Determined by Thermal Lens Technique. IEEE J. Quantum Electron. 2007, 43, 751–757. [Google Scholar] [CrossRef]
- Martins, V.M.; Brasse, G.; Doualan, J.L.; Braud, A.; Camy, P.; Messias, D.N.; Catunda, T.; Moncorgé, R. Thermal conductivity of Nd 3 + and Yb 3 + doped laser materials measured by using the thermal lens technique. Opt. Mater. (Amst.) 2014, 37, 211–213. [Google Scholar] [CrossRef]
- Santos, C.N.; Mohr, D.; Silva, W.F.; de Camargo, A.S.S.; Eckert, H.; Vermelho, M.V.D.; Hernandes, A.C.; Ibanez, A.; Jacinto, C. Luminescent and thermo-optical properties of Nd 3 + -doped yttrium aluminoborate laser glasses. J. Appl. Phys. 2009, 106, 023512. [Google Scholar] [CrossRef]
- Seshadri, M.; Radha, M.; Daramian, H.; Barbosa, L.C.; Bell, M.J.V.; Anjos, V. Thermal and nonlinear optical properties of Tm 3 + -doped tellurite glasses. J. Therm. Anal. Calorim. 2019, 138, 2971–2978. [Google Scholar] [CrossRef]
Sample | (±0.01) | ||||
---|---|---|---|---|---|
PMZE0.0T | 3.10 ± 0.05 | 1.95 | 6.05 ± 0.36 | 9.63 | 3.70 ± 0.10 |
PMZE0.1T | 3.33 ± 0.05 | 1.96 | 6.53 ± 0.10 | 7.76 | 3.20 ± 0.02 |
PMZE0.2T | 3.39 ± 0.10 | 2.00 | 6.78 ± 0.20 | 7.84 | 3.36 ± 0.05 |
PMZE0.3T | 3.54 ± 0.15 | 2.03 | 7.18 ± 0.30 | 6.84 | 3.11 ± 0.08 |
PMZE0.4T | 3.58 ± 0.16 | 2.05 | 7.34 ± 0.34 | 7.49 | 3.51 ± 0.09 |
PMZE0.5T | 3.61 ± 0.12 | 2.08 | 7.51 ± 0.24 | 7.20 | 3.41 ± 0.08 |
PMZE0.6T | 3.65 ± 0.13 | 2.10 | 7.66 ± 0.26 | 5.82 | 2.80 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimpour, Z.; Cabrera, H.; Ahmadi, F.; Asgari, A.; Niemela, J. Sulfophosphate Glass Doped with Er3+ and TiO2 Nanoparticles: Thermo-Optical Characterization by Photothermal Spectroscopy. Photonics 2021, 8, 115. https://doi.org/10.3390/photonics8040115
Ebrahimpour Z, Cabrera H, Ahmadi F, Asgari A, Niemela J. Sulfophosphate Glass Doped with Er3+ and TiO2 Nanoparticles: Thermo-Optical Characterization by Photothermal Spectroscopy. Photonics. 2021; 8(4):115. https://doi.org/10.3390/photonics8040115
Chicago/Turabian StyleEbrahimpour, Zeinab, Humberto Cabrera, Fahimeh Ahmadi, Asghar Asgari, and Joseph Niemela. 2021. "Sulfophosphate Glass Doped with Er3+ and TiO2 Nanoparticles: Thermo-Optical Characterization by Photothermal Spectroscopy" Photonics 8, no. 4: 115. https://doi.org/10.3390/photonics8040115
APA StyleEbrahimpour, Z., Cabrera, H., Ahmadi, F., Asgari, A., & Niemela, J. (2021). Sulfophosphate Glass Doped with Er3+ and TiO2 Nanoparticles: Thermo-Optical Characterization by Photothermal Spectroscopy. Photonics, 8(4), 115. https://doi.org/10.3390/photonics8040115