Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogaerts, W.; Chrostowski, L. Silicon photonics circuit design: Methods, tools and challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Helkey, R.; Saleh, A.A.M.; Buckwalter, J.; Bowers, J.E. High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8300215. [Google Scholar] [CrossRef]
- Chen, X.; Milosevic, M.; Stankovic, S.; Reynolds, S.; Bucio, T.D.; Li, K.; Thomson, D.J.; Gardes, F.; Reed, G. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 2018, 106, 2101. [Google Scholar] [CrossRef] [Green Version]
- Saber, M.G.; Xu, L.; Sagor, R.H.; Wang, Y.; Plant, D.V. Integrated polarisation handling devices. IET Optoelectron. 2019, 14, 109–119. [Google Scholar] [CrossRef]
- Dong, P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6100609. [Google Scholar] [CrossRef]
- Luo, L.-W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Li, C.; Wang, S.; Wu, H.; Shi, Y.; Wu, Z.; Gao, S.; Dai, T.; Yu, H.; Tsang, H.-K. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonics Rev. 2018, 12, 1700109. [Google Scholar] [CrossRef]
- Tan, Y.; Wu, H.; Dai, D. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J. Lightwave Technol. 2018, 36, 2051–2058. [Google Scholar] [CrossRef]
- Han, X.; Xiao, H.; Liu, Z.; Zhao, T.; Jia, H.; Yang, J.; Eggleton, B.J.; Tian, Y. Reconfigurable on-chip mode exchange for mode-division multiplexing optical networks. J. Lightwave Technol. 2019, 37, 1008–1013. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Wang, T.; Xiao, H.; Ren, G.; Mitchell, A.; Yang, J.; Tian, Y. Multi-channel parallel silicon mode-order converter for multimode on-chip optical switching. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 8302106. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; He, Y.; Zhu, Q.; Sun, L.; Su, Y. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 2018, 7, 1801191. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Yang, Z.; Zhu, L.; Yang, Y.; Huang, Y.; Ren, X. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 2019, 27, 34434–34441. [Google Scholar] [CrossRef]
- Greenberg, Y.; Karabchevsky, A. Spatial eigenmodes conversion with metasurfaces engraved in silicon ridge waveguides. Appl. Opt. 2019, 58, F21–F25. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, X.; Zhang, Y.; Xiang, J.; Wang, K.; Wang, H.; Su, Y. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 2020, 45, 3797–3800. [Google Scholar] [CrossRef]
- Abu-elmaaty, B.E.; Sayed, M.S.; Pokharel, R.K.; Shalaby, H.M.H. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 2019, 58, 1763–1771. [Google Scholar] [CrossRef]
- Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 2018, 5, 1365. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Frellsen, L.F.; Ding, Y.; Sigmund, O.; Frandsen, L.H. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 2016, 24, 16866–16873. [Google Scholar] [CrossRef] [PubMed]
- Ahmmed, K.T.; Chan, H.P.; Li, B. Broadband high-order mode pass filter based on mode conversion. Opt. Lett. 2017, 42, 3686–3689. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yu, Y.; Chen, G.; Zhang, X. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett. 2016, 41, 3257–3260. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Shi, Y.; Li, J.; Dai, P.; Zhao, Y.; Li, L.; Lu, J.; Chen, X. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 2019, 27, 1941–1957. [Google Scholar] [CrossRef]
- Okayama, H.; Onawa, Y.; Takahashi, H.; Shimura, D.; Yaegashi, H.; Sasaki, H. Polarization insensitive silicon waveguide wavelength filter using polarization rotator and mode conversion Bragg grating with resonator cavity. Jpn. J. Appl. Phys. 2020, 59, 128002. [Google Scholar] [CrossRef]
- Chen, D.; Xiao, X.; Wang, L.; Yu, Y.; Liu, W.; Yang, Q. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 2015, 23, 11152–11159. [Google Scholar] [CrossRef] [PubMed]
- Gallacher, K.; Millar, R.W.; Griskeviciute, U.; Sinclair, M.; Sorel, M.; Baldassarre, L.; Ortolani, M.; Soref, R.; Paul, D.J. Ultra-broadband mid-infrared Ge-on-Si waveguide polarization rotator. APL Photonics 2020, 5, 026102. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhu, C.; Hu, X.; Dong, Y.; Zhang, B.; Ni, Y. On-chip silicon shallowly etched TM0-to-TM1 mode-order converter with high conversion efficiency and low modal crosstalk. J. Opt. Soc. Am. B 2020, 37, 1290–1297. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Dai, D. Multimode silicon photonics. Nanophotonics 2019, 8, 227. [Google Scholar] [CrossRef]
- Zhang, G.; Mojaver, H.R.; Das, A. Liboiron-Ladouceur, Mode insensitive switch for on-chip interconnect mode division multiplexing systems. Opt. Lett. 2020, 45, 811–814. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Halir, R.; Ortega-Monux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wanguemert-Perez, G.J.; Schmid, J.H.; Molina-Fernandez, J.; Cheben, P. Subwavelength-grating metamaterial structures for silicon photonic devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef] [Green Version]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, D.M. Electromagnetic Simulation Using the FDTD Method; IEEE Press: Piscataway Township, NJ, USA, 2000. [Google Scholar]
- Available online: https://www.lumerical.com/products/fdtd/ (accessed on 8 January 2021).
- Rahim, A.; Spuesens, T.; Baets, R.; Bogaerts, W. Open-access silicon photonics: Current status and emerging initiatives. Proc. IEEE 2018, 106, 2313–2330. [Google Scholar] [CrossRef] [Green Version]
- Komljenovic, T.; Huang, D.; Pintus, P.; Tran, M.A.; Davenport, M.L.; Bowers, J. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE 2018, 106, 2246–2257. [Google Scholar] [CrossRef]
- Seo, E.; Choi, B.K.; Kim, O. Determination of proximity effect parameters and the shape bias parameter in electron beam lithography. Microelectron. Eng. 2020, 53, 305–308. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Dong, Y.; Zhang, B.; Ni, Y. A compact silicon-based TM0-to-TM2 mode-order converter using shallowly-etched slots. J. Opt. 2020, 22, 015802. [Google Scholar] [CrossRef]
- Liu, L. Densely packed waveguide array (DPWA) on a silicon chip for mode division multiplexing. Opt. Express 2015, 23, 12135. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Xu, Y.; Kang, Z.; Hu, X.; Dong, Y.; Zhang, B.; Ni, Y.; Xu, P. Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface. Photonics 2021, 8, 95. https://doi.org/10.3390/photonics8040095
Zhu C, Xu Y, Kang Z, Hu X, Dong Y, Zhang B, Ni Y, Xu P. Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface. Photonics. 2021; 8(4):95. https://doi.org/10.3390/photonics8040095
Chicago/Turabian StyleZhu, Chenxi, Yin Xu, Zhe Kang, Xin Hu, Yue Dong, Bo Zhang, Yi Ni, and Peipeng Xu. 2021. "Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface" Photonics 8, no. 4: 95. https://doi.org/10.3390/photonics8040095
APA StyleZhu, C., Xu, Y., Kang, Z., Hu, X., Dong, Y., Zhang, B., Ni, Y., & Xu, P. (2021). Silicon-Based TM0-to-TM3 Mode-Order Converter Using On-Chip Shallowly Etched Slot Metasurface. Photonics, 8(4), 95. https://doi.org/10.3390/photonics8040095