Linear Combinations of the Complex Degrees of Coherence
Abstract
:1. Introduction
2. Proposition
3. Examples
3.1. Difference between Two CDCs
3.2. Combination of Four CDCs
3.3. Series Combination of CDCs
4. Discussion: Correlation Linear Phase Plates
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University: Cambridge, UK, 1995. [Google Scholar]
- Korotkova, O. Random Beams: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Sahin, S.; Korotkova, O. Light sources generating far fields with tunable flat profiles. Opt. Lett. 2012, 37, 2970–2972. [Google Scholar] [CrossRef] [PubMed]
- Santarsiero, M.; Piquero, G.; de Sande, J.C.G.; Gori, F. Difference of cross-spectral densities. Opt. Lett. 2014, 39, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Gori, F.; Santarsiero, M. Difference of two Gaussian Schell-model cross-spectral densities. Opt. Lett. 2014, 39, 2731–2734. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Korotkova, O. Alternating series of cross-spectral densities. Opt. Lett. 2015, 40, 2473–2476. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E. Significance and measurability of the phase of a spatially coherent optical field. Opt. Lett. 2003, 28, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Gbur, G.; Visser, T.D. Coherence vortices in partially coherent beams. Opt. Commun. 2003, 222, 117–125. [Google Scholar] [CrossRef]
- Wolf, E. Solution of the phase problem in the theory of structure determination of crystals from x-ray diffraction experiments. Phys. Rev. Lett. 2009, 103, 075501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, G. Quantitaive Phase Imaging of Cells and Tissues; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Advances in communications using optical vortices. Photon. Res. 2016, 4, B14–B28. [Google Scholar] [CrossRef]
- Nagali, E.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 2009, 103, 013601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divitt, S.; Novotny, L. Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica 2015, 2, 95–103. [Google Scholar] [CrossRef]
- Korotkova, O.; Chen, X. Phase structuring of the complex degree of coherence. Opt. Lett. 2018, 43, 4727–4730. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Korotkova, O. Complex degree of coherence modeling with famous planar curves. Opt. Lett. 2018, 43, 6049–6052. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Korotkova, O. Phase structuring of the 2D complex coherence states. Opt. Lett. 2019, 44, 2470–2473. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, O. Multi-Gaussian Schell-model source with a complex coherence state. J. Opt. 2019, 21, 045607. [Google Scholar] [CrossRef]
- Korotkova, O.; Chen, X.; Setälä, T. Electromagnetic Schell-model beams with arbitrary complex correlation states. Opt. Lett. 2019, 44, 4945–4949. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Korotkova, O. Asymmetric coherence gratings. Opt. Lett. 2020, 45, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Gori, F.; Santarsiero, M. Devising genuine spatial correlation functions. Opt. Lett. 2007, 32, 3531–3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, Z.; Korotkova, O. Cosine-Gaussian Schell-model sources. Opt. Lett. 2013, 38, 2578–2580. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Statistical Optics; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hyde, I.V.M.W.; Basu, S.; Xiao, X.; Voelz, D.G. Producing any desired far-field mean irradiance pattern using a partially-coherent Schell-model source. J. Opt. 2015, 17, 055607. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Z.; Korotkova, O. Linear Combinations of the Complex Degrees of Coherence. Photonics 2021, 8, 146. https://doi.org/10.3390/photonics8050146
Mei Z, Korotkova O. Linear Combinations of the Complex Degrees of Coherence. Photonics. 2021; 8(5):146. https://doi.org/10.3390/photonics8050146
Chicago/Turabian StyleMei, Zhangrong, and Olga Korotkova. 2021. "Linear Combinations of the Complex Degrees of Coherence" Photonics 8, no. 5: 146. https://doi.org/10.3390/photonics8050146
APA StyleMei, Z., & Korotkova, O. (2021). Linear Combinations of the Complex Degrees of Coherence. Photonics, 8(5), 146. https://doi.org/10.3390/photonics8050146