Wavefront Modulation and Beam Shaping into Arbitrary Three-Dimensional Intensity Distributions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Arbitrary 3D Wavefront Modulation by Inverted Gabor Holography
2.2. Three-Dimensional Wavefront Modulation with Spherical Waves
2.3. Resolution
3. Results
3.1. Three-Dimensional Intensity Wavefront Modulation Using Amplitude-Only Modulator
3.2. Three-Dimensional Intensity Wavefront Modulation Using Phase-Only Modulator
3.3. High-Resolution Modulator
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Gabor, D. Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. A 1949, 197, 454–487. [Google Scholar] [CrossRef]
- Tricoles, G. Computer generated holograms—An historical review. Appl. Opt. 1987, 26, 4351–4360. [Google Scholar] [CrossRef] [PubMed]
- Bryngdahl, O.; Wyrowski, F. Digital holography-computer-generated holograms. Prog. Opt. 1990, 28, 1–86. [Google Scholar] [CrossRef]
- Skeren, M.; Richter, I.; Fiala, P. Design of binary phase-only diffractive optical elements for laser beam shaping. In Laser Beam Shaping; Dickey, F.M., Holswade, S.C., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2000; Volume 4095, pp. 154–164. [Google Scholar]
- Yu, W.J.; Takahara, K.; Konishi, T.; Yotsuya, T.; Ichioka, Y. Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory. Appl. Opt. 2000, 39, 3531–3536. [Google Scholar] [CrossRef]
- Latychevskaia, T.; Fink, H.-W. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams. Sci. Rep. 2016, 6, 26312. [Google Scholar] [CrossRef] [Green Version]
- Latychevskaia, T.; Schachtler, D.; Fink, H.-W. Creating Airy beams employing a transmissive spatial light modulator. Appl. Opt. 2016, 55, 6095–6101. [Google Scholar] [CrossRef]
- Shiloh, R.; Arie, A. 3D shaping of electron beams using amplitude masks. Ultramicroscopy 2017, 177, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Gerchberg, R.W.; Saxton, W.O. A practical algorithm for determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Fienup, J.R. Iterative method applied to image-reconstruction and to computer-generated holograms. Opt. Eng. 1980, 19, 297–305. [Google Scholar] [CrossRef]
- Berry, M.V.; Balazs, N.L. Nonspreading wave packets. Am. J. Phys. 1979, 47, 264–267. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of accelerating Airy beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, J.A.; Alieva, T.; Abramochkin, E.; Castro, I. Shaping of light beams along curves in three dimensions. Opt. Express 2013, 21, 20544–20555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voloch-Bloch, N.; Lereah, Y.; Lilach, Y.; Gover, A.; Arie, A. Generation of electron Airy beams. Nature 2013, 494, 331–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Roichman, Y.; Grier, D.G. Optical solenoid beams. Opt. Express 2010, 18, 6988–6993. [Google Scholar] [CrossRef] [Green Version]
- Brzobohaty, O.; Karasek, V.; Siler, M.; Chvatal, L.; Cizmar, T.; Zemanek, P. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nature Photon. 2013, 7, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Rosen, J.; Yariv, A. Snake beam—A paraxial arbitrary focal line. Opt. Lett. 1995, 20, 2042–2044. [Google Scholar] [CrossRef] [Green Version]
- Latychevskaia, T.; Fink, H.-W. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams: Matlab code. Matlab File Exch. Server. 2016. Available online: https://ch.mathworks.com/matlabcentral/fileexchange/92218-92213d-wavefront-modulation-by-inverted-gabor-holography (accessed on 22 May 2021).
- Ratcliffe, J.A. Some aspects of diffraction theory and their application to the ionosphere. Rep. Prog. Phys. 1956, 19, 188–267. [Google Scholar] [CrossRef]
- Latychevskaia, T.; Fink, H.-W. Practical algorithms for simulation and reconstruction of digital in-line holograms. Appl. Opt. 2015, 54, 2424–2434. [Google Scholar] [CrossRef] [Green Version]
- Goodman, J.W. Introduction to Fourier Optics, 3rd ed.; Roberts & Company Publishers: Greenwood Village, CO, USA, 2004. [Google Scholar]
- Fink, H.-W.; Stocker, W.; Schmid, H. Holography with low-energy electrons. Phys. Rev. Lett. 1990, 65, 1204–1206. [Google Scholar] [CrossRef] [Green Version]
- Fink, H.-W.; Schmid, H.; Ermantraut, E.; Schulz, T. Electron holography of individual DNA molecules. J. Opt. Soc. Am. A 1997, 14, 2168–2172. [Google Scholar] [CrossRef]
- Abbe, E. On the estimation of aperture in the microscope. J. R. Microsc. Soc. 1881, 1, 388–423. [Google Scholar] [CrossRef]
- Abbe, E. The relation of aperture and power in the microscope. J. R. Microsc. Soc. 1882, 2, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Latychevskaia, T.; Longchamp, J.-N.; Fink, H.-W. When holography meets coherent diffraction imaging. Opt. Express 2012, 20, 28871–28892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latychevskaia, T. Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes. Appl. Opt. 2019, 58, 3597–3603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, T.W.; Offer, R.F.; Franke-Arnold, S.; Arnold, A.S.; Radwell, N. Comparison of beam generation techniques using a phase only spatial light modulator. Opt. Express 2016, 24, 6249–6264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for minimally invasive medicine. In Annual Review of Biomedical Engineering; Yarmush, M.L., Duncan, J.S., Gray, M.L., Eds.; Annual Reviews: Palo Alto, CA, USA, 2010; Volume 12, pp. 55–85. [Google Scholar]
- Huang, H.W.; Sakar, M.S.; Petruska, A.J.; Pane, S.; Nelson, B.J. Soft micromachines with programmable motility and morphology. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latychevskaia, T. Wavefront Modulation and Beam Shaping into Arbitrary Three-Dimensional Intensity Distributions. Photonics 2021, 8, 179. https://doi.org/10.3390/photonics8060179
Latychevskaia T. Wavefront Modulation and Beam Shaping into Arbitrary Three-Dimensional Intensity Distributions. Photonics. 2021; 8(6):179. https://doi.org/10.3390/photonics8060179
Chicago/Turabian StyleLatychevskaia, Tatiana. 2021. "Wavefront Modulation and Beam Shaping into Arbitrary Three-Dimensional Intensity Distributions" Photonics 8, no. 6: 179. https://doi.org/10.3390/photonics8060179
APA StyleLatychevskaia, T. (2021). Wavefront Modulation and Beam Shaping into Arbitrary Three-Dimensional Intensity Distributions. Photonics, 8(6), 179. https://doi.org/10.3390/photonics8060179