A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis
Abstract
:1. Introduction
2. Model Design and Analysis of Principle
3. Simulation Results and Analysis
3.1. Influence of Thickness of Ag/Au Bimetallic Layer on SPR
3.2. Influence of Silicon Layer on SPR Sensor
3.3. Influence of 2D Materials on SPR Sensor
3.4. Sensing Characteristics in Wavelength Interrogation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Cao, Y.; Shi, Y.; Cai, Y.; Chen, L.; Wang, D.; Liu, Y.; Chen, X.; Zhu, Z.; Hong, Z.; et al. Surface plasmon resonance biosensor combined with lentiviral particle stabilization strategy for rapid and specific screening of P-Glycoprotein ligands. Anal. Bioanal. Chem. 2021, 413, 2021–2031. [Google Scholar] [CrossRef]
- Zeng, Y.; Hu, R.; Wang, L.; Gu, D.; He, J.; Wu, S.-Y.; Ho, H.-P.; Li, X.; Qu, J.; Gao, B.Z.; et al. Recent advances in surface plasmon resonance imaging: Detection speed, sensitivity, and portability. Nanophotonics 2017, 6, 1017–1030. [Google Scholar] [CrossRef]
- Li, C.-T.; Chen, H.-F.; Un, I.-W.; Lee, H.-C.; Yen, T.-J. Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection. Opt. Express 2012, 20, 3250–3260. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, T.; Shen, J.; Luo, L.; Li, C.; Yao, J. Spin Hall effect of light in a prism-waveguide coupling structure with a magneto-optical bimetallic film. Superlattices Microstruct. 2019, 128, 136–143. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Dai, X.; Gao, Y.; Xiang, Y. An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure. J. Appl. Phys. 2016, 120, 053101. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Shimizu, F.M.; Ferreira, M. Surface Plasmon Resonance (SPR) for Sensors and Biosensors. In Nanocharacterization Techniques; Elsevier: Amsterdam, The Netherlands, 2017; pp. 183–200. [Google Scholar]
- Kumar, S.; Singh, R. Recent optical sensing technologies for the detection of various biomolecules: Review. Opt. Laser Technol. 2021, 134, 106620. [Google Scholar] [CrossRef]
- Raghuwanshi, S.K.; Kumar, M.; Jindal, S.K.; Kumar, A.; Prakash, O. High-Sensitivity Detection of Hazardous Chemical by Special Featured Grating-Assisted Surface Plasmon Resonance Sensor Based on Bimetallic Layer. IEEE Trans. Instrum. Meas. 2020, 69, 5072–5080. [Google Scholar] [CrossRef]
- Preechaburana, P.; Gonzalez, M.C.; Suska, A.; Filippini, D. Surface Plasmon Resonance Chemical Sensing on Cell Phones. Angew. Chem. Int. Ed. 2012, 51, 11585–11588. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, S. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5, 1753–1767. [Google Scholar] [CrossRef]
- Li, Q.; Dou, X.; Zhang, L.; Zhao, X.; Luo, J.; Yang, M. Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Anal. Bioanal.Chem. 2019, 411, 6057–6066. [Google Scholar] [CrossRef]
- Wu, Q.; Li, N.; Wang, Y.; Xu, Y.; Wu, J.; Jia, G.; Ji, F.; Fang, X.; Chen, F.; Cui, X. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets. Anal. Chem. 2020, 92, 3354–3360. [Google Scholar] [CrossRef]
- Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron. 2019, 142, 111449. [Google Scholar] [CrossRef]
- Ashley, J.; Shahbazi, M.-A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron. 2017, 91, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Karabchevsky, A.; Tsapovsky, L.; Marks, R.S.; Abdulhalim, I. Study of Immobilization Procedure on Silver Nanolayers and Detection of Estrone with Diverged Beam Surface Plasmon Resonance (SPR) Imaging. Biosensors 2013, 3, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Chu, H.; Koh, W.; Li, E. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 2010, 18, 14395–14400. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; You, Q.; Shan, Y.; Gan, S.; Zhao, Y.; Dai, X.; Xiang, Y. Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens. Actuators B 2018, 277, 210–215. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Prajapati, Y.; Saini, J. Sensitivity enhancement of MXene based SPR sensor using silicon: Theoretical analysis. Silicon 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Varasteanu, P. Transition metal dichalcogenides/gold-based surface plasmon resonance sensors: Exploring the geometrical and material parameters. Plasmonics 2020, 15, 243–253. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Ritacco, T.; Aceti, D.M.; De Luca, A.; Giocondo, M.; Caputo, R. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-Resolution in Two-Photon Direct Laser Writing. Adv. Mater. 2021, 33, e2008644. [Google Scholar] [CrossRef]
- Garoli, D.; Calandrini, E.; Giovannini, G.; Hubarevich, A.; Caligiuri, V.; De Angelis, F. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz. 2019, 4, 1153–1157. [Google Scholar] [CrossRef]
- Palermo, G.; Sreekanth, K.V.; Maccaferri, N.; Lio, G.E.; Nicoletta, G.; De Angelis, F.; Hinczewski, M.; Strangi, G. Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics 2020, 10, 295–314. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Ruffato, G.; Romanato, F.; Garoli, D.; Cattarin, S.J.O.E. Nanoporous gold plasmonic structures for sensing applications. Opt. Express 2011, 19, 13164–13170. [Google Scholar] [CrossRef] [PubMed]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic films can easily be better: Rules and recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Pal, S.; Prajapati, Y.; Saini, J. Analyzing the Sensitivity of Heterostructure of BP-Graphene/TMDC Layer Coated SPR Biosensor. In Advances in VLSI, Communication, and Signal Processing; Springer: Berlin, Germany, 2020; pp. 663–671. [Google Scholar]
- Green, M.A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 2008, 92, 1305–1310. [Google Scholar] [CrossRef]
- Shalabney, A.; Abdulhalim, I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A 2010, 159, 24–32. [Google Scholar] [CrossRef]
- Srivastava, A.; Verma, A.; Das, R.; Prajapati, Y. A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 2020, 203, 163430. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, Z.; Sa, B.; Wu, B.; Sun, Z. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nurrohman, D.T.; Chiu, N.-F. Surface Plasmon Resonance Biosensor Performance Analysis on 2D Material Based on Graphene and Transition Metal Dichalcogenides. ECS J. Solid State Sci. Technol. 2020, 9, 115023. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.; Verma, A.; Prajapati, Y.; Saini, J. Effect of silicon on sensitivity of SPR biosensor using hybrid nanostructure of black phosphorus and MXene. Superlattices Microstruct. 2020, 145, 106591. [Google Scholar] [CrossRef]
Layer | Materials | Refractive Index |
---|---|---|
Prism | BK7 | 1.5168 |
Bimetal | Au | 0.14330 + 3.6080i |
Bimetal | Ag | 0.051255 + 4.3165i |
Sensing medium | Water | 1.33 + Δn |
Materials | Thickness of Single Layer (nm) | Refractive Index | |
---|---|---|---|
MXene | 0.993 | 2.38 + 1.33i | |
Graphene | 0.34 | 3 + 1.149i | |
MoS2 | 0.65 | 5.08 + 1.17i |
Thickness of Si (nm) | Layer of Graphene | Sensitivity (deg/RIU) | FOM | Rmin |
---|---|---|---|---|
6 | 1 | 293.4 | 45.1 | 0.02 |
6 | 2 | 297.2 | 39.75 | 0.106 |
6 | 3 | 254.4 | 34.42 | 0.223 |
5 | 3 | 227.8 | 34.75 | 0.094 |
5 | 4 | 234.4 | 33.04 | 0.165 |
5 | 5 | 233 | 32.18 | 0.241 |
4 | 5 | 200.8 | 33 | 0.172 |
4 | 6 | 195.8 | 30.72 | 0.225 |
3 | 6 | 175 | 33.3 | 0.192 |
3 | 7 | 175.4 | 30.99 | 0.31 |
2 | 7 | 153.8 | 33 | 0.204 |
1 | 7 | 140.8 | 37.84 | 0.179 |
1 | 8 | 141.8 | 34.7 | 0.219 |
0 | 8 | 130 | 39.73 | 0.203 |
Wavelength (nm) | Structure | Sensitivity (deg/RIU) | FOM | Reported Year and References |
---|---|---|---|---|
633 | BK7/Ag/Si/MXene | 231 | 39.83 | 2020 [18] |
632.8 | BK7/Au/MoS2 | 174.15 | 27.86 | 2020 [32] |
633 | BK7/Ag/Si/BP/MXene | 264 | 41.25 | 2020 [33] |
632.8 | BK7/Au/WSe2/Graphene | 178.87 | 27.41 | 2020 [32] |
632.8 | BK7/Au/Ag/Si/MXene | 274 | 36.88 | This work |
632.8 | BK7/Au/Ag/Si/MoS2 | 246 | 34.1 | This work |
632.8 | BK7/Au/Ag/Si/Graphene | 297.2 | 39.75 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wang, J.; Chen, G.; Shen, J.; Li, C.; Tang, T. A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis. Photonics 2021, 8, 270. https://doi.org/10.3390/photonics8070270
Zhang P, Wang J, Chen G, Shen J, Li C, Tang T. A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis. Photonics. 2021; 8(7):270. https://doi.org/10.3390/photonics8070270
Chicago/Turabian StyleZhang, Pengyu, Junxian Wang, Guoquan Chen, Jian Shen, Chaoyang Li, and Tingting Tang. 2021. "A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis" Photonics 8, no. 7: 270. https://doi.org/10.3390/photonics8070270
APA StyleZhang, P., Wang, J., Chen, G., Shen, J., Li, C., & Tang, T. (2021). A High-Sensitivity SPR Sensor with Bimetal/Silicon/Two-Dimensional Material Structure: A Theoretical Analysis. Photonics, 8(7), 270. https://doi.org/10.3390/photonics8070270