Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers
Abstract
:1. Introduction
2. Numerical Prediction
2.1. Numerical Model
2.2. Dynamics Behaviors under Symmetric Coupling Strength
2.3. Dynamics Behaviors under Asymmetric Coupling Strength
3. Experimental Observation
3.1. Experimental Setup
3.2. Dynamical Behaviors under Symmetric Coupling Strength
3.3. Dynamics Behaviors under Asymmetric Coupling Strength
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chrostowski, L.; Shi, W. Monolithic injection-locked high-speed semiconductor ring lasers. J. Light. Technol. 2008, 26, 3355–3362. [Google Scholar] [CrossRef]
- Chow, W.W.; Yang, Z.S.; Vawter, G.A.; Skogen, E.J. Modulation response improvement with isolator-free injection-locking. IEEE Photonics Technol. Lett. 2009, 21, 839–841. [Google Scholar] [CrossRef]
- Tauke-Pedretti, A.; Vawter, G.A.; Skogen, E.J.; Peake, G.; Overberg, M.; Alford, C.; Chow, W.W.; Yang, Z.S.; Torres, D.; Cajas, F. Mutual injection locking of monolithically integrated coupled-cavity DBR lasers. IEEE Photonics Technol. Lett. 2011, 23, 908–910. [Google Scholar] [CrossRef]
- Yang, Z.; Tauke-Pedretti, A.; Vawter, G.A.; Chow, W.W. Mechanism for modulation response improvement in mutually injection-locked semiconductor lasers. IEEE J. Quantum Electron. 2011, 47, 300–305. [Google Scholar] [CrossRef]
- Xiao, Z.X.; Huang, Y.Z.; Yang, Y.D.; Tang, M.; Xiao, J.L. Modulation bandwidth enhancement for coupled twin-square microcavity lasers. Opt. Lett. 2017, 42, 3173–3176. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, D.; Xiong, B.; Luo, Y.; Wang, J.; Hao, Z.; Han, Y.; Wang, L.; Li, H. Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 628–635. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Zhou, Y.; Zhao, G.; Shi, Y.; Zheng, J.; Zhang, Z.; Liu, Y.; Zou, L.; Zhou, Y.; et al. Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method. Opt. Express 2017, 25, 27595–27608. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, G.; Zhou, Y.; Zhang, Z.; Pu, T.; Shi, Y.; Zhang, Y.; Liu, Y.; Li, L.; Lu, J.; et al. Experimental demonstration of amplified feedback DFB Laser with modulation bandwidth enhancement based on the reconstruction equivalent chirp technique. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Chien, C.-Y.; Lo, Y.-H.; Wu, Y.-C.; Hsu, S.-C.; Tseng, H.-R.; Lin, C.-C. Compact photonic integrated chip for tunable microwave generation. IEEE Photonics Technol. Lett. 2014, 26, 490–493. [Google Scholar] [CrossRef]
- Lo, Y.H.; Wu, Y.C.; Hsu, S.C.; Hwang, Y.C.; Chen, B.C.; Lin, C.C. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Opt. Express 2014, 22, 13125–13137. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Pu, T.; Zhang, Y.; Shi, Y.; Li, J.; Li, Y.; Zhu, H.; Chen, X. Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser. Opt. Express 2019, 27, 7036–7046. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Li, L.; Zhang, Y.; Zheng, J.; Du, Y.; Zou, L.; Shi, Y.; Zhang, X.; Chen, Y.; et al. Tunable microwave generation utilizing monolithic integrated two-section DFB laser. Laser Phys. 2019, 29, 046201. [Google Scholar] [CrossRef]
- Fujino, H.; Ohtsubo, J. Synchronization of chaotic oscillations in mutually coupled semiconductor lasers. Opt. Rev. 2001, 8, 351–357. [Google Scholar] [CrossRef]
- Gross, N.; Kinzel, W.; Kanter, I.; Rosenbluh, M.; Khaykovich, L. Synchronization of mutually versus unidirectionally coupled chaotic semiconductor lasers. Opt. Commun. 2006, 267, 464–468. [Google Scholar] [CrossRef] [Green Version]
- Mengue, A.D.; Essimbi, B.Z. Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 2012, 70, 1241–1253. [Google Scholar] [CrossRef]
- Yan, S.L. Chaotic synchronization of two mutually coupled semiconductor lasers for optoelectronic logic gates. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2896–2904. [Google Scholar]
- Hou, Y.S.; Xia, G.Q.; Jayaprasath, E.; Yue, D.Z.; Yang, W.Y.; Wu, Z.M. Prediction and classification performance of reservoir computing system using mutually delay-coupled semiconductor lasers. Opt. Commun. 2019, 433, 215–220. [Google Scholar] [CrossRef]
- Hou, Y.S.; Xia, G.Q.; Jayaprasath, E.; Yue, D.Z.; Wu, Z.M. Parallel information processing using a reservoir computing system based on mutually coupled semiconductor lasers. Appl. Phys. B-Lasers Opt. 2020, 126, 40. [Google Scholar] [CrossRef]
- Liang, W.Y.; Xu, S.R.; Jiang, L.; Jia, X.H.; Lin, J.B.; Yang, Y.L.; Liu, L.M.; Zhang, X. Design of parallel reservoir computing by mutually-coupled semiconductor lasers with optoelectronic feedback. Opt. Commun. 2021, 495, 127120. [Google Scholar] [CrossRef]
- Mihana, T.; Mitsui, Y.; Takabayashi, M.; Kanno, K.; Sunada, S.; Naruse, M.; Uchida, A. Decision making for the multi-armed bandit problem using lag synchronization of chaos in mutually coupled semiconductor lasers. Opt. Express 2019, 27, 26989–27008. [Google Scholar] [CrossRef]
- Heil, T.; Fischer, I.; Elsasser, W.; Mulet, J.; Mirasso, C.R. Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 2001, 86, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Rogister, F.; Garcia-Ojalvo, J. Symmetry breaking and high-frequency periodic oscillations in mutually coupled laser diodes. Opt. Lett. 2003, 28, 1176–1178. [Google Scholar] [CrossRef]
- Mulet, J.; Mirasso, C.; Heil, T.; Fischer, I. Synchronization scenario of two distant mutually coupled semiconductor lasers. J. Opt. B Quantum Semiclass. Opt. 2004, 6, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Junges, L.; Gavrielides, A.; Gallas, J.A.C. Synchronization properties of two mutually delay-coupled semiconductor lasers. J. Opt. Soc. Am. B-Opt. Phys. 2016, 33, C65–C71. [Google Scholar] [CrossRef]
- Seifikar, M.; Amann, A.; Peters, F.H. Dynamics of two identical mutually delay-coupled semiconductor lasers in photonic integrated circuits. Appl. Opt. 2018, 57, E37–E44. [Google Scholar] [CrossRef] [PubMed]
- Lingnau, B.; Perrott, A.H.; Dernaika, M.; Caro, L.; Peters, F.H.; Kelleher, B. Dynamics of on-chip asymmetrically coupled semiconductor lasers. Opt. Lett. 2020, 45, 2223–2226. [Google Scholar] [CrossRef] [PubMed]
- Simpson, T.B.; Liu, J.M. Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers. J. Appl. Phys. 1993, 73, 2587–2589. [Google Scholar] [CrossRef]
- Liu, J.M.; Simpson, T.B. Four-wave mixing and optical modulation in a semiconductor laser. IEEE J. Quantum Electron. 1994, 30, 957–965. [Google Scholar]
- Simpson, T.B.; Liu, J.M.; Huang, K.F.; Tai, K. Nonlinear dynamics induced by external optical injection in semiconductor lasers. Quantum Semiclass. Opt. 1997, 9, 765–784. [Google Scholar] [CrossRef]
- Hwang, S.K.; Liu, J.M. Dynamical characteristics of an optically injected semiconductor laser. Optics Communications. Opt. Commun. 2000, 183, 195–205. [Google Scholar] [CrossRef]
- Simpson, T.B.; Liu, J.M. Spontaneous emission, nonlinear optical coupling, and noise in laser diodes. Opt. Commun. 1994, 112, 43–47. [Google Scholar] [CrossRef]
- Hwang, S.K.; Liu, J.M.; White, J.K. 35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking. IEEE Photonics Technol. Lett. 2004, 16, 972–974. [Google Scholar] [CrossRef]
- Chan, S.C. Analysis of an optically injected semiconductor laser for microwave generation. IEEE J. Quantum Electron. 2010, 46, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Simpson, T.B.; Liu, J.M.; AlMulla, M.; Usechak, N.G.; Kovanis, V. Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1500807. [Google Scholar] [CrossRef]
- Lo, K.H.; Hwang, S.K.; Donati, S. Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers. Opt. Express 2014, 22, 18648–18661. [Google Scholar] [CrossRef]
- Lo, K.H.; Hwang, S.K.; Donati, S. Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics. Opt. Express 2017, 25, 31595–31611. [Google Scholar] [CrossRef]
- Zhang, L.; Chan, S.C. Cascaded injection of semiconductor lasers in period-one oscillations for millimeter-wave generation. Opt. Lett. 2019, 44, 4905–4908. [Google Scholar] [CrossRef]
- Tseng, C.H.; Lin, C.T.; Hwang, S.K. V- and W-band microwave generation and modulation using semiconductor lasers at period-one nonlinear dynamics. Opt. Lett. 2020, 45, 6819–6822. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Chaotic radar using nonlinear laser dynamics. IEEE J. Quantum Electron. 2004, 40, 815–820. [Google Scholar] [CrossRef]
- Xu, H.; Wang, B.J.; Han, H.; Liu, L.; Li, J.X.; Wang, Y.C.; Wang, A.B. Remote imaging radar with ultra-wideband chaotic signals over fiber links. Int. J. Bifurc. Chaos 2015, 25, 1530029. [Google Scholar] [CrossRef]
- Wang, L.S.; Guo, Y.Y.; Li, P.; Zhao, T.; Wang, Y.C.; Wang, A.B. White-chaos radar with enhanced range resolution and anti-jamming capability. IEEE Photon. Technol. Lett. 2017, 29, 1723–1726. [Google Scholar] [CrossRef]
- Tseng, C.H.; Hwang, S.K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett. 2020, 45, 3777–3780. [Google Scholar] [CrossRef]
- Pecora, L.M.; Carroll, T.L.; Johnson, G.A.; Mar, D.J.; Heagy, J.F. Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 1997, 7, 520–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanWiggeren, G.D.; Roy, R. Communication with chaotic lasers. Science 1998, 279, 1198–1200. [Google Scholar] [CrossRef] [Green Version]
- Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garcia-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore, K.A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005, 438, 343–346. [Google Scholar] [CrossRef]
- Uchida, A.; Rogister, F.; Garcia-Ojalvo, J.; Roy, R. Synchronization and communication with chaotic laser systems. Prog. Opt. 2005, 48, 203–341. [Google Scholar]
- Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008, 2, 728–732. [Google Scholar] [CrossRef]
- Hart, J.D.; Terashima, Y.; Uchida, A.; Baumgartner, G.B.; Murphy, T.E.; Roy, R. Recommendations and illustrations for the evaluation of photonic random number generators. APL Photonics 2017, 2, 090901-1–090901-22. [Google Scholar] [CrossRef]
- Wang, A.; Wang, L.; Li, P.; Wang, Y. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos. Opt. Express 2017, 25, 3153–3164. [Google Scholar] [CrossRef]
- Tseng, C.H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.C.; Hwang, S.K. High-entropy chaos generation using semiconductor lasers subject to intensity-modulated optical injection for certified physical random number generation. Opt. Lett. 2021, 46, 3384–3387. [Google Scholar] [CrossRef] [PubMed]
Parameter | Symbol | Value |
---|---|---|
Linewidth enhancement factor | , | 3 |
Normalized bias level | , | |
Coupling delay time | , | ns |
Cavity decay rate | , | |
Spontaneous carrier relaxation rate | , | |
Differential carrier relaxation rate | , | |
Nonlinear carrier relaxation rate | , | |
Spontaneous emission rate | , | 4.7 × 10 Vms [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, B.-K.; Tseng, C.-H.; Chu, Y.-C.; Hwang, S.-K. Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers. Photonics 2022, 9, 28. https://doi.org/10.3390/photonics9010028
Liao B-K, Tseng C-H, Chu Y-C, Hwang S-K. Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers. Photonics. 2022; 9(1):28. https://doi.org/10.3390/photonics9010028
Chicago/Turabian StyleLiao, Bin-Kai, Chin-Hao Tseng, Yu-Chen Chu, and Sheng-Kwang Hwang. 2022. "Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers" Photonics 9, no. 1: 28. https://doi.org/10.3390/photonics9010028
APA StyleLiao, B. -K., Tseng, C. -H., Chu, Y. -C., & Hwang, S. -K. (2022). Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers. Photonics, 9(1), 28. https://doi.org/10.3390/photonics9010028