Modulators in Silicon Photonics—Heterogenous Integration & and Beyond
Abstract
:1. Introduction
2. The Mechanics of Modulator Types
2.1. Ring Modulators
2.2. Mach-Zehnder Modulators (MZM)
2.3. Electro-Absorption Modulators (EAMs)
3. III–V Hybrid Modulators
4. Integration Approaches
4.1. Bonding
4.2. Micro-Transfer Printing
5. Creating Transfer Printable EAM Devices
6. Hybrid Silicon Modulators beyond III–V
6.1. Plasmonics
6.2. Epsilon-Near-Zero (ENZ) Modulators
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Weigel, P.; Zhao, J.; Ruesing, M.; Mookherjea, S. Achieving beyond-100-GHz large-signal modula-tion bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate. APL Photonics 2019, 4, 096101. [Google Scholar] [CrossRef] [Green Version]
- Bogaerts, W.; Taillaert, D.; Luyssaert, B.; Dumon, P.; Campenhout, J.; Bienstman, P.; Thourhout, D.; Baets, R.; Wiaux, V.; Beckx, S. Basic structures for photonic integrated circuits in Silicon-on-insulator. Opt. Express 2004, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Luyssaert, B.; Vandersteegen, P.; Taillaert, D.; Dumon, P.; Bogaerts, W.; Bienstman, P.; Van Thourhout, D.; Wiaux, V.; Beckx, S.; Baets, R. A compact photonic horizontal spot-size converter realized in silicon-on-insulator. IEEE Photonics Technol. Lett. 2005, 17, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Dumon, P.; Bogaerts, W.; Wiaux, V.; Wouters, J.; Beckx, S.; Van Campenhout, J.; Taillaert, D.; Luyssaert, B.; Bienstman, P.; Van Thourhout, D.; et al. Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography. IEEE Photonics Technol. Lett. 2004, 16, 1328–1330. [Google Scholar] [CrossRef] [Green Version]
- Doylend, J.K.; Knights, A.P. The evolution of silicon photonics as an enabling technology for optical interconnec-tion. Laser Photonics Rev. 2012, 6, 504–525. [Google Scholar] [CrossRef]
- Liu, A.; Jones, R.; Liao, L.; Samara-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 2004, 427, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Marris-Morini, D.; Le Roux, X.; Vivien, L.; Cassan, E.; Pascal, D.; Halbwax, M.; Maine, S.; Laval, S.; Fédéli, J.M.; Damlencourt, J.F. Optical modulation by carrier depletion in a silicon PIN diode. Opt. Express 2006, 14, 10838–10843. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometrescale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Green, W.M.J.; Rooks, M.J.; Sekaric, L.; Vlasov, Y.A. Ultracompact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express 2007, 15, 17106–17113. [Google Scholar] [CrossRef]
- Manipatruni, S.; Xu, Q.; Schmidt, B.; Shakya, J.; Lipson, M. High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator. In Proceedings of the LEOS 2007-IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings Lasers and Electro-Optics Society, Lake Buena Vista, FL, USA, 21–25 October 2007; pp. 537–538. [Google Scholar]
- Liao, L.; Liu, A.; Rubin, D.; Basak, J.; Chetrit, Y.; Nguyen, H.; Cohen, R.; Izhaky, N.; Paniccia, M. 40 Gbit/s silicon optical modulator for highspeed applications. Electron. Lett. 2007, 43, 1196–1197. [Google Scholar] [CrossRef]
- Liu, A.; Liao, L.; Rubin, D.; Basak, J.; Chetrit, Y.; Nguyen, H.; Cohen, R.; Izhaky, N.; Paniccia, M. Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide. Semicond. Sci. Technol. 2008, 23, 064001. [Google Scholar] [CrossRef]
- Rosenberg, J.C.; Green, W.M.J.; Assefa, S.; Schow, C.L.; Rylyakov, A.V.; Gill, D.M.; Lee, B.G.; Jahnes, C.; Barwicz, T.; Shank, S.M.; et al. High-speed and low-power microring modulators for silicon photonics. In Proceedings of the IEEE Photonic Society 24th Annual Meeting, Arlington, VA, USA, 9–13 October 2011; pp. 256–257. [Google Scholar]
- Sun, J.; Kumar, R.; Sakib, M.; Driscoll, J.; Jayatilleka, H.; Rong, H. A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning. J. Light. Technol. 2019, 37, 110–115. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2011, 6, 47–73. [Google Scholar] [CrossRef]
- Soref, R.; Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 1987, 23, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Timurdogan, E.; Sorace-Agaskar, C.M.; Sun, J.; Hosseini, E.S.; Biberman, A.; Watts, M.R. An ultralow power athermal silicon modulator. Nat. Commun. 2014, 5, 4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preston, K.; Sherwood-Droz, N.; Levy, J.S.; Lipson, M. Performance guidelines for WDM interconnects based on silicon microring resonators. In Proceedings of the CLEO: 2011-Laser Science to Photonic Applications, Baltimore, MD, USA, 1–6 May 2011; pp. 1–2. [Google Scholar]
- Dinu, M.; Quochi, F.; Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 2003, 82, 2954–2956. [Google Scholar] [CrossRef]
- Almeida, V.R.; Lipson, M. Optical bistability on a silicon chip. Opt. Lett. 2004, 29, 2387–2389. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lipson, M. Carrier-induced optical bistability in silicon ring resonators. Opt. Lett. 2006, 31, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.J.; Borselli, M.; Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 2006, 14, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Koyama, F.; Iga, K. Frequency chirping in external modulators. J. Light. Technol. 1988, 6, 87–93. [Google Scholar] [CrossRef]
- Gnauck, A.H.; Winzer, P.J. Optical phase-shift-keyed transmission. J. Light. Technol. 2005, 23, 115–130. [Google Scholar] [CrossRef]
- Winzer, P.J.; Essiambre, R. Advanced Optical Modulation Formats. Proc. IEEE 2006, 94, 952–985. [Google Scholar] [CrossRef]
- Kikuchi, K. Coherent transmission systems. In Proceedings of the 2008 34th European Conference on Optical Communication, Brussels, Belgium, 21–25 September 2008; pp. 1–39. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nature Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Liow, T.Y.; Ang, K.W.; Fang, Q.; Song, J.F.; Xiong, Y.Z.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Silicon Modulators and Germanium Photodetectors on SOI: Monolithic Integration, Compatibility, and Performance Optimization. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 307–315. [Google Scholar] [CrossRef]
- Damas, P.; Le Roux, X.; Le Bourdais, D.; Cassan, E.; Marris-Morini, D.; Izard, N.; Maroutian, T.; Lecoeur, P.; Vivien, L. Pockels effect study in Strained Silicon Mach-Zenhder Interferometer. In Proceedings of the 11th International Conference on Group IV Photonics (GFP), Paris, France, 27–29 August 2014; pp. 243–244. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.Z.; Gardes, F.Y.; Nedeljkovic, M.; Hu, Y.; Thomson, D.J.; Li, K.; Wilson, P.R.; Chen, S.W.; Hsu, S.S. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 2014, 3, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.; Gothoskar, P.; Patel, V.; Piede, D.; Anderson, S.; Tummidi, R.; Adams, D.; Appel, C.; Metz, P.; Sunder, S.; et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. In Proceedings of the 11th International Conference on Group IV Photonics (GFP), Paris, France, 27–29 August 2014; pp. 1–2. [Google Scholar] [CrossRef]
- Reed, G.; Thomson, D.; Gardes, F.; Hu, Y.; Fedeli, J.; Mashanovich, G. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Front. Phys. 2014, 2, 77. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Xu, H.; Li, X.; Li, Z.; Chu, T.; Yu, Y.; Yu, J. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 2013, 21, 4116–4125. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, D.A.; Johnson, J.E.; Ketelsen, L.J.P.; Eng, L.E.; Kiely, P.A.; Mason, T.G.B. Telecommunication lasers. In Optical Fiber Telecommunications IV; Kaminow, I., Li, T., Eds.; Academic Press: New York, NY, USA, 2002; pp. 587–665. [Google Scholar]
- Jeong, U.; Lee, D.H.; Lee, K.; Park, J.H. Monolithic 1 × 8 DWDM Silicon Optical Transmitter Using an Arrayed-Waveguide Grating and Electro-Absorption Modulators for Switch Fabrics in Intra-Data-Center Interconnects. Micromachines 2020, 11, 991. [Google Scholar] [CrossRef]
- Li, Q.; Ho, C.P.; Takagi, S.; Takenaka, M. Efficient optical modulator by reverse-biased III–V/ Si hybrid MOS capacitor based on FK effect and carrier depletion. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Li, Q.; Ho, C.P.; Takagi, S.; Takenaka, M. Optical phase modulators based on reverse-biased III–V/Si hybrid metal-oxide-semiconductor capacitors. IEEE Photonics Technol. Lett. 2020, 32, 345–348. [Google Scholar] [CrossRef]
- Li, Q.; Ho, C.; Takagi, S.; Takenaka, M. Si racetrack modulator with III–V/Si hybrid MOS optical phase shifter. In Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 22–26 September 2019. [Google Scholar]
- Ohno, S.; Li, Q.; Sekine, N.; Fujikata, J.; Noguchi, M.; Takahashi, S.; Toprasertpong, K.; Takagi, S.; Takenaka, M. Taper-less III–V/Si hybrid MOS optical phase shifter using ultrathin InP membrane. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Tang, Y.; Peters, J.D.; Bowers, J.E. Over 67 GHz bandwidth hybrid silicon electro-absorption modulator with asymmetric segmented electrode for 1.3 μm transmission. Opt. Express 2012, 20, 11529–11535. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Chen, H.W.; Jain, S.; Peters, J.D.; Westergren, U.; Bowers, J.E. 50 Gb/s hybrid silicon traveling-wave electro-absorption modulator. Opt. Express 2011, 19, 5811–5816. [Google Scholar] [CrossRef] [PubMed]
- Bruns, J.; Mitze, T.; Zimmermann, L.; Voigt, K.; Schnarrenberger, M.; Petermann, K. An optical board approach based on SOI (silicon-on-insulator). In Proceedings of the 9th International Conference on Transparent Optical Networks (ICTON 2007), Rome, Italy, 1–5 July 2007; pp. 179–182. [Google Scholar]
- Roelkens, G.; Brouckaert, J.; Thourhout, D.V.; Baets, R.; Notzel, R.; Smit, M. Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene. J. Electrochem. Soc. 2006, 153, G1015–G1019. [Google Scholar] [CrossRef] [Green Version]
- Soganci, I.; La Porta, A.; Offrein, B. Flip-chip optical couplers with scalable I/O count for silicon photonics. Opt. Express 2013, 21, 16075. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Qiu, C.; Zhang, X.; Xu, Q. Efficient coupler between chip-level and board-level optical waveguides. Opt. Lett. 2011, 36, 3614–3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonstad, C.G.; Rumpler, J.J.; Barkley, E.R.; Perkins, J.M.; Famenini, S. Recess integration of microcleaved laser diode platelets with dielectric waveguides on silicon-art. no. 69090O. In Proceedings of the Conference on Novel inPlane Semiconductor Lasers VII, San Jose, CA, USA, 19–24 January 2008; p. O9090. [Google Scholar]
- Jokerst, N.; Royal, M.; Palit, S.; Luan, L.; Dhar, S.; Tyler, T. Chip scale integrated microresonator sensing systems. J. Biophotonics 2009, 2, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Roelkens, G.; Van Campenhout, J.; Brouckaert, J.; Van Thourhout, D.; Baets, R.; Romeo, P.; Regreny, P.; Kazmierczak, A.; Seassal, C.; Letartre, X. III–V/Si photonics by die-to-wafer bonding. Mater. Today 2007, 10, 36–43. [Google Scholar] [CrossRef]
- Niklaus, F.; Stemme, G.; Lu, J. and Gutmann, R. Adhesive wafer bonding. J. Appl. Phys. 2006, 99, 031101. [Google Scholar] [CrossRef]
- Tong, Q.-Y.; Gösele, U. Semiconductor Wafer Bonding; Wiley-VCH: Berlin, Germany, 1999. [Google Scholar]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; de Groote, A.; de Koninck, Y.; Dhoore, S.; Fu, X.; Gassenq, A.; Hattasan, N. III–V-on-Silicon Photonic Devices for Op-tical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Roelkens, G.; Baets, R.; Bowers, J. Hybrid Integrated Platforms for Silicon Photonics. Materials 2010, 3, 1782–1802. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Takenaka, M.; Takagi, S. Extremely high modulation efficiency III–V/si hybrid mos optical modulator fabricated by direct wafer bonding. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 25.5.1–25.5.4. [Google Scholar] [CrossRef]
- Zhang, J.; Haq, B.; O’Callaghan, J.; Gocalinska, A.; Pelucchi, E.; Trindade, A.; Corbett, B.; Morthier, G.; Roelkens, G. Transfer-printing-based integration of a III–V-on-silicon distributed feedback laser. Opt. Express 2018, 26, 8821–8830. [Google Scholar] [CrossRef]
- De Groote, A.; Cardile, P.; Subramanian, A.; Fecioru, A.; Bower, C.; Delbeke, D.; Baets, R. and Roelkens, G. Transfer-printing-based integration of single-mode waveguide-coupled III–V-on-silicon broadband light emitters. Opt. Express 2016, 24, 13754–13762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Groote, A.D.; Abbasi, A.; Loi, R.; O’Callaghan, J.; Corbett, B.; Trindade, A.J.; Bower, C.A.; Roelkens, G. Sili-con photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III–V photodetectors. Opt. Express 2017, 25, 14290–14299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, J.; Loi, R.; Mura, E.E.; Roycroft, B.; Trindade, A.J.; Thomas, K.; Gocalinska, A.; Pelucchi, E.; Zhang, J.; Roelkens, R.; et al. Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based de-vices. Opt. Express 2017, 7, 4408–4414. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Boeuf, F.; Fujikata, J.; Takahashi, S.; Takagi, S.; Takenaka, M. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics 2017, 11, 486–490. [Google Scholar] [CrossRef]
- Hiraki, T.; Aihara, T.; Hasebe, K.; Takeda, K.; Fujii, T.; Kakitsuka, T.; Tsuchizawa, T.; Fukuda, H.; Matsuo, S. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photonics 2017, 11, 482–485. [Google Scholar] [CrossRef]
- Haq, B.; Rahimi Vaskasi, J.; Zhang, J.; Gocalinska, A.; Pelucchi, E.; Corbett, B.; Roelkens, G. Mi-cro-transfer-printed III–V-on-silicon C-band distributed feedback lasers. Opt. Express 2020, 28, 32793. [Google Scholar] [CrossRef] [PubMed]
- Loi, R.; O’Callaghan, J.; Roycroft, B.; Robert, C.; Fecioru, A.; Trindade, A.; Gocalinska, A.; Pelucchi, E.; Bower, C.; Corbett, B. Transfer Printing of AlGaInAs/InP Etched Facet Lasers to Si Substrates. IEEE Photonics J. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Vanackere, T.; Billet, M.; de Beeck, C.O.; Poelman, S.; Roelkens, G.; Clemmen, S.; Kuyken, B. Micro-Transfer Printing of Lithium Niobate on Silicon Nitride. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020. [Google Scholar]
- Liu, J.; Beals, M.; Pomerene, A.; Bernardis, S.; Sun, R.; Cheng, J.; Kimerling, L.; Michel, J. Wave-guide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photonics 2008, 2, 433–437. [Google Scholar] [CrossRef]
- Fujikata, J.; Noguchi, M.; Kawashita, K.; Katamawari, R.; Takahashi, S.; Nishimura, M.; Ono, H.; Shimura, D.; Takahashi, H.; Yaegashi, H.; et al. High-speed Ge/Si electro-absorption optical modu-lator in C-band operation wavelengths. Opt. Express 2020, 28, 33123. [Google Scholar] [CrossRef] [PubMed]
- Sorianello, V.; Contestabile, G.; Romagnoli, M. Graphene on Silicon Modulators. J. Light. Technol. 2020, 38, 2782–2789. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Pantouvaki, M.; Van Campenhout, J.; Brems, S.; Asselberghs, I.; Huyghebaert, C.; Absil, P.; Van Thourhout, D. Broadband 10 Gb/s operation of graphene electroabsorption modulator on silicon. Laser Photonics Rev. 2016, 10, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Alessri, C.; Asselberghs, I.; Ban, Y.; Brems, S.; Huyghebaert, C.; Van Campenhout, J.; Van Thourhout, D.; Pantouvaki, M. Broadband 20 Gbit/s Graphene-si Electro-Absorption Modulator. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018. [Google Scholar]
- Liu, M.; Yin, X.; Zhang, X. Double-layer Graphene optical modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Phare, C.T.; Lee, Y.D.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband grapheneoptical modulator with 35 GHz speed. ACS Photon. 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Chen, A. Broadband Optical Modulators: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Mercante, A.; Yao, P.; Shi, S.; Schneider, G.; Murakowski, J.; Prather, D. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 2016, 24, 15590. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit/s and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Abel, S.; Eltes, F.; Ortmann, J.E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A.M.; Tulli, D.; et al. Large Pockels Effect in Micro- and Nanostructured Barium Titanate Integrated on Silicon. Nat. Mater. 2019, 18, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Eltes, F.; Mai, C.; Caimi, D.; Kroh, M.; Popoff, Y.; Winzer, G.; Petousi, D.; Lischke, S.; Ortmann, J.; Czornomaz, L. A BaTiO3-Based Electro-Optic Pockels Modulator Monolithically Inte-grated on an Advanced Silicon Photonics Platform. J. Light. Technol. 2019, 37, 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Boltasseva, A.; Atwater, H.A. Low-loss plasmonics metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Zektzer, R.; Desiatov, B.; Mazurski, N.; Bozhevolnyi, S.I.; Levy, U. Experimental demonstration of cmoscompatible long-range dielectric loaded surface plasmon waveguides (lr-dlsppws). Opt. Express 2014, 22, 22009–22017. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, N.; Ferrera, G.V.; Naik, M.; Babicheva, V.E.; Shalaev, V.M.; Boltasseva, A. Experimental demonstration of titanium nitride interconnects. Opt. Express 2014, 22, 12238–12247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delacour, C.; Blaize, S.; Grosse, P.; Fedeli, J.-M.; Bruyant, A.; Salas-Montiel, R.; Lerondel, G.; Chelnokov, A. Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxidesilicon nanophotonics. Nano Lett. 2010, 10, 2922–2926. [Google Scholar] [CrossRef] [PubMed]
- Fedyanin, D.Y.; Yakubovsky, D.I.; Kirtaev, R.V.; Volkov, V.S. Ultralow-loss cmos copper plasmonic waveguides. Nano Lett. 2016, 16, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Hoessbacher, C.; Heni, W.; Baeuerle, B.; Bitachon, B.; Josten, A.; Ayata, M.; et al. A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter. Nat. Electron. 2020, 3, 338–345. [Google Scholar] [CrossRef]
- Hoessbacher, C.; Josten, A.; Baeuerle, B.; Fedoryshyn, Y.; Hettrich, H.; Salamin, Y.; Heni, W.; Haffner, C.; Kaiser, C.; Schmid, R.; et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express 2017, 25, 1762–1768. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B.; Saha, S.; et al. Low-loss plasmon-assisted electro-optic modulator. Nature 2018, 556, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range [invited]. Opt. Mater. Express 2011, 1, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Li, Z.; Liu, K.; Ye, C.; Sorger, V.J. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics 2015, 4, 198–213. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. Near-zero refractive index photonics. Nat. Photonics 2017, 11, 149–158. [Google Scholar] [CrossRef]
- Kuang, Y.; Liu, Y.; Tian, L.; Han, W.; Li, Z. A Dual-Slot Electro-Optic Modulator Based on an Epsilon-Near-Zero Oxide. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler. J. Phys. Appl. Phys. 2016, 49, 075101. [Google Scholar] [CrossRef]
- Vasudev, A.; Kang, J.; Park, J.; Liu, X.; Brongersma, M. Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express 2013, 21, 26387. [Google Scholar] [CrossRef] [PubMed]
- Keeler, G.A.; Geib, K.M.; Serkland, D.K.; Parameswaran, S.; Luk, T.S.; Griñe, A.J.; Ihlefeld, J.; Campione, S.; Wendt, J.R. Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017. [Google Scholar]
- Gao, Q.; Li, E.; Wang, A. Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide. Photonics Res. 2018, 6, 277. [Google Scholar] [CrossRef]
Modulator Type | Speed Achieved (Gb/s) | Bandwidth (GHz) | Footprint () | Loss (dB) | Figure of Merit |
---|---|---|---|---|---|
LiN MZM [1] | 20 | >100 | NA | 7.7 dB/cm | NA |
Si MZM [6] | 1 | 1 | >2500 | 6.7 | = ∼8 V·cm |
Si Phase Modulator [7] | NA | NA | NA | NA | = 3.1 V·cm |
Si MRM [8] | 1.5 | NA | >115 | 4 | NA |
Si MRM [10] | 18 | NA | >450 | NA | NA |
Si MZM [11] | 40 | 30 | NA | <4 | = <4 V·cm |
Si MZM [12] | 40 | 30 | >NA | ∼7 | = ∼4 V·cm |
Si MRM [13] | 30 | NA | >300 | NA | = ∼0.65 V·cm |
Si MRM [14] | 128 | 50 | >300 | 2.9–4.2 | = 0.52 V·cm |
Si MRM [17] | 25–44 | 35 | >18 | 29 dB/cm | NA |
Si MZM [31] | 28–40 | NA | NA | 6.5 dB/mm | = 2 V·mm |
Si MZM [32] | 52 | NA | NA | 5 | 1.4–1.9 V/cm |
Si MZM [33] | 60 | 27.7 | NA | 3.5 | = 2 V·cm |
Si EAM [35] | 4 GHz | 1542–1558 nm | NA | 51 | NA |
III–V Si MOS [36] | NA | NA | NA | NA | = 0.11 V·cm |
III–V Si MOS [37] | NA | 100 expected | NA | 28 dB/cm | = 0.12–0.17 V·cm |
III–V Si MRM [38] | 38 GHz | 50 | NA | NA | = 0.059–0.064 V·cm |
III–V Si MZM [39] | NA | NA | NA | NA | = 0.1 V·cm |
III–V Si EAM [40] | 50 | 74 | NA | 4.9 | NA |
III–V Si EAM [41] | 50 | 42 | NA | >15 | NA |
III–V Si MZM [53] | NA | NA | NA | NA | = 0.047 V·cm |
LN Si MZM [62] | NA | NA | 240,000 | 7 | = 5.5 V·cm |
GeSi EAM [63] | 10 GHz | 1539–1553 nm | 30–200 | >5 | ER/IL = 10/3.7 |
GeSi EAM [64] | 56 | NA | ∼400 | 4 | ER/IL = 0.1–0.8 |
DLG on Si [65] | 50 | NA | NA | 20 | ER/IL = 3/20 |
SLG on Si [66] | 1.2 GHz | 1.35–1.6 m | 25 | NA | NA |
SLG on Si [67] | 10 | NA | 500 | 2.8 | ER/IL = 3.5/2.8 |
SLG on Si [68] | 20 | 70 nm | NA | 7.7 | ER/IL = 4.4/7.7 |
DLG on Si [69] | 1 GHz | NA | >80 | NA | NA |
DLG on Si [70] | 22 | NA | NA | NA | = 3.75 GHz/V |
DLG on Si [71] | 35 GHz | 1500–1640 nm | 18 | 0.9 | ER/IL = 2/0.9 |
on Si [74] | 110 GHz | NA | NA | 15 | DC- = 9.4 V |
LN MZM [75] | 100–112 * expected | NA | NA | 2.5 | = 5.1 V |
BTO MZM [77] | 25 | NA | NA | 5.8 dB/cm | = 0.2 V·cm |
Plasmonic MZM [85] | 100 | NA | NA | 27 | ER/IL = 10/27 |
Plasmonic MZM [86] | 100 | NA | NA | 8 | NA |
Plasmonic Ring [87] | 72 | NA | NA | 2.5 | ER/IL = 10/2.5 |
ENZ EAM [94] | 2.5 | 70 nm | NA | NA | NA |
ITO ENZ [95] | 40 MHz | 70 nm | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulcahy, J.; Peters, F.H.; Dai, X. Modulators in Silicon Photonics—Heterogenous Integration & and Beyond. Photonics 2022, 9, 40. https://doi.org/10.3390/photonics9010040
Mulcahy J, Peters FH, Dai X. Modulators in Silicon Photonics—Heterogenous Integration & and Beyond. Photonics. 2022; 9(1):40. https://doi.org/10.3390/photonics9010040
Chicago/Turabian StyleMulcahy, Jack, Frank H. Peters, and Xing Dai. 2022. "Modulators in Silicon Photonics—Heterogenous Integration & and Beyond" Photonics 9, no. 1: 40. https://doi.org/10.3390/photonics9010040
APA StyleMulcahy, J., Peters, F. H., & Dai, X. (2022). Modulators in Silicon Photonics—Heterogenous Integration & and Beyond. Photonics, 9(1), 40. https://doi.org/10.3390/photonics9010040