Dual-Branch Feature Fusion Network for Salient Object Detection
Abstract
:1. Introduction
2. Dual-Branch Feature Fusion Network
2.1. Overall Structure
2.2. Local Information Concatenation Module
2.3. Global Information Perception Module
2.4. Refinement Fusion Module
2.5. Loss Function
3. Experiment Settings
3.1. Datasets
3.2. Training and Testing
4. Results and Discussion
4.1. Comparison with the State-of-the-Art
4.2. Ablation Studies
4.3. Discussion with Wide-Field Optical System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittal, M.; Arora, M.; Pandey, T.; Goyal, L.M. Image segmentation using deep learning techniques in medical images. In Advancement of Machine Intelligence in Interactive Medical Image Analysis; Springer Nature: London, UK, 2020; pp. 41–63. [Google Scholar]
- Verma, O.P.; Roy, S.; Pandey, S.C.; Mittal, M. Advancement of Machine Intelligence in Interactive Medical Image Analysis; Springer Nature: London, UK, 2019. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Tie, L.; Jian, S.; Nanning, Z.; Xiaoou, T.; HeungYeung, S. Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 353–367. [Google Scholar]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1915–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingming, C.; GuoXing, Z.; Mitra, N.J.; XiaoLei, H.; ShiMin, H. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 373, 569–582. [Google Scholar]
- Federico, P.; Krahenbuhl, P.; Pritch, Y.; Hornung, A. Saliency filters: Contrast based filtering for salient region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Providence, RI, USA, 16–21 June 2012; pp. 733–740. [Google Scholar]
- Mingming, C.; Warrell, J.; WenYan, L.; Shuai, Z.; Vineet, V.; Crook, N. Efficient salient region detection with soft image abstraction. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2–8 December 2013; pp. 1529–1536. [Google Scholar]
- Xiaodi, H.; Liqing, Z. Saliency detection: A spectral residual approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007; pp. 1–8. [Google Scholar]
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 22–24 June 2009; pp. 1597–1604. [Google Scholar]
- Li, G.; Yu, Y. Visual saliency based on multiscale deep features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5455–5463. [Google Scholar]
- Zhao, R.; Ouyang, W.; Li, H.; Wang, X. Saliency detection by multi-context deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1265–1274. [Google Scholar]
- Shengfeng, H.; Rynson, L.H.W.; Wenxi, L.; Zhe, H.; Qingxiong, Y. Supercnn: A superpixelwise convolutional neural network for salient object detection. Int. J. Comput. Vis. 2015, 115, 330–344. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Qibin, H.; Mingming, C.; Xiaowei, H.; Borji, A.; Zhuowen, T.; Torr, P.H.S. Deeply supervised salient object detection with short connections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 3203–3212. [Google Scholar]
- Nian, L.; Junwei, H. Dhsnet: Deep hierarchical saliency network for salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 678–686. [Google Scholar]
- Pingping, Z.; Dong, W.; Huchuan, L.; Hongyu, W.; Baocai, Y. Learning uncertain convolutional features for accurate saliency detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–27 October 2017; pp. 212–221. [Google Scholar]
- Guanbin, L.; Yizhou, Y. Deep contrast learning for salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 478–487. [Google Scholar]
- Pingping, Z.; Dong, W.; Huchuan, L.; Hongyu, W.; Xiang, R. Amulet: Aggregating multi-level convolutional features for salient object detection. In Proceedings of the IEEE international conference on computer vision, Venice, Italy, 22–27 October 2017; pp. 202–211. [Google Scholar]
- Guanbin, L.; Yuan, X.; Liang, L.; Yizhou, Y. Instance level salient object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 2386–2395. [Google Scholar]
- Nian, L.; Junwei, H.; Ming-Hsuan, Y. Picanet: Learning pixel-wise contextual attention for saliency detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3089–3098. [Google Scholar]
- Mengyang, F.; Huchuan, L.; Errui, D. Attentive feedback network for boundary-aware salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, NY, USA, 15–20 June 2019; pp. 1623–1632. [Google Scholar]
- Kim, H.; Chae, E.; Jo, G.; Paik, J. Fisheye lens-based surveillance camera for wide field-of-view monitoring. In Proceedings of the IEEE International Conference on Consumer Electronics ICCE, Las Vegas, NV, USA, 9–12 January 2015; pp. 505–506. [Google Scholar]
- Zhilai, L.; Donglin, X.; Xuejun, Z. Optical and mechanical design for long focal length and wide-field optical system. Opt. Precis. Eng. 2008, 2008, 12. [Google Scholar]
- Kashima, S.; Hazumi, M.; Imada, H.; Katayama, N.; Matsumura, T.; Sekimoto, Y.; Sugai, H. Wide field-of-view crossed dragone optical system using anamorphic aspherical surfaces. Appl. Opt. 2018, 57, 4171–4179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiong, Y.; Li, X.; Jianping, S.; Jiaya, J. Hierarchical saliency detection, in CVPR. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–26 June 2013; pp. 1155–1162. [Google Scholar]
- Lijun, W.; Huchuan, L.; Yifan, W.; Mengyang, F.; Dong, W.; Baocai, Y.; Xiang, R. Learning to detect salient objects with image-level supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 3796–3805. [Google Scholar]
Method | ECSSD | DUTS-TE |
---|---|---|
UCF [17] | 0.080 | 0.111 |
DHS [16] | 0.062 | 0.067 |
DCL [18] | 0.082 | 0.081 |
DSS [15] | 0.064 | 0.065 |
Amulet [19] | 0.062 | 0.075 |
MSR [20] | 0.059 | 0.062 |
PiCANet [21] | 0.049 | 0.055 |
AFNet [22] | 0.044 | 0.046 |
Ours | 0.044 | 0.048 |
Method | ECSSD | DUTS-TE |
---|---|---|
UCF [17] | 0.904 | 0.771 |
DHS [16] | 0.905 | 0.815 |
DCL [18] | 0.896 | 0.786 |
DSS [15] | 0.906 | 0.813 |
Amulet [19] | 0.911 | 0.773 |
MSR [20] | 0.903 | 0.824 |
PiCANet [21] | 0.930 | 0.855 |
AFNet [22] | 0.935 | 0.862 |
Ours | 0.933 | 0.860 |
Model | FPS |
---|---|
UCF [17] | 21 |
DHS [16] | 20 |
DCL [18] | 7 |
DSS [15] | 12 |
Amulet [19] | 16 |
MSR [20] | 4 |
PiCANet [21] | 10 |
AFNet [22] | 18 |
Ours | 43 |
Method | MAE |
---|---|
HL | 0.112 |
HL + LICM | 0.082 |
HL + GIPM | 0.078 |
HL + LICM + GIPM | 0.060 |
HL + LL + LICM + GIPM | 0.052 |
HL + LL + LICM + GIPM + RFM | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Xu, Z.; Wang, J.; Feng, H.; Li, Q. Dual-Branch Feature Fusion Network for Salient Object Detection. Photonics 2022, 9, 44. https://doi.org/10.3390/photonics9010044
Song Z, Xu Z, Wang J, Feng H, Li Q. Dual-Branch Feature Fusion Network for Salient Object Detection. Photonics. 2022; 9(1):44. https://doi.org/10.3390/photonics9010044
Chicago/Turabian StyleSong, Zhehan, Zhihai Xu, Jing Wang, Huajun Feng, and Qi Li. 2022. "Dual-Branch Feature Fusion Network for Salient Object Detection" Photonics 9, no. 1: 44. https://doi.org/10.3390/photonics9010044
APA StyleSong, Z., Xu, Z., Wang, J., Feng, H., & Li, Q. (2022). Dual-Branch Feature Fusion Network for Salient Object Detection. Photonics, 9(1), 44. https://doi.org/10.3390/photonics9010044