Heat-Induced Emission Enhancement in a Yb:YAG Crystal-Derived Silica Fiber
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Fiber Fabrication and Properties
2.2. Heat Treatment Process and Characterization Methods
3. Experimental Results and Discussion
3.1. Raman Spectra of the YCDSFs before and after Heat Treatment
3.2. Excitation and Emission Spectra of the YCDSFs before and after Heat Treatment
3.3. Fluorescence Lifetime of the Yb3+ Ions in the YCDSFs before and after Heat Treatment
3.4. Schematic Diagram of the Local Structure of the Yb Ions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buikema, A.; Jose, F.; Augst, S.J.; Fritschel, P.; Mavalvala, N. Narrow-linewidth fiber amplifier for gravitational-wave detectors. Opt. Lett. 2019, 44, 3833–3836. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Jiang, M.Y.; Xue, Z.L.; Zeng, S.J. 808 nm light triggered lanthanide nanoprobes with enhanced down-shifting emission beyond 1500 nm for imaging-guided resection surgery of tumor and vascular visualization. Theranostics 2020, 10, 6875–6885. [Google Scholar] [CrossRef]
- Nurnberg, J.; Willenberg, B.J.; Phillips, C.R.; Keller, U. Dual-comb ranging with frequency combs from single cavity free-running laser oscillators. Opt. Express 2021, 29, 24910–24918. [Google Scholar] [CrossRef]
- Philippov, V.; Codemard, C.; Jeong, Y.; Alegria, C.; Sahu, J.K.; Nilsson, J. High-energy in-fiber pulse amplification for coherent lidar applications. Opt. Lett. 2004, 29, 2590–2592. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Chen, G.; Zhang, L.; Hu, J.M.; Li, J.Y.; He, B.; Chen, J.B.; Gu, X.J.; Zhou, J.; Feng, Y. High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber. Appl. Opt. 2012, 51, 7130–7133. [Google Scholar] [CrossRef]
- Li, Y.; Peng, K.; Zhan, H.; Liu, S.; Ni, L.; Wang, Y.Y.; Yu, J.; Wang, X.L.; Wang, J.J.; Jing, F.; et al. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability. Opt. Fiber Technol. 2018, 41, 7–11. [Google Scholar] [CrossRef]
- Wan, Y.; Wen, J.X.; Jiang, C.; Zou, K.; Tang, F.Z.; Pang, F.F.; Wang, T.Y. Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb co-doped silica fiber. J. Lightwave Technol. 2022, 40, 805–812. [Google Scholar] [CrossRef]
- Gomes, L.; Denaldi, R.L.; Moraes, R.D.; Baldochi, S.L. The luminescence parameters of Yb3+: Er3+-doped LiLa(WO4)2 single crystal grown in the form of fiber for up-conversion green emission. J. Lumin. 2017, 187, 479–485. [Google Scholar] [CrossRef]
- Ueda, J.; Tanabe, S. Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics. J. Appl. Phys. 2009, 106, 043101. [Google Scholar] [CrossRef]
- Lafouti, M.; Latifi, H.; Fathi, H.; Ebrahimzadeh, S.; Sarikhani, S.; Sarabi, H. Experimental investigation of a high-power 1018 nm fiber laser using a 20/400 μm ytterbium-doped fiber. Appl. Opt. 2019, 58, 729–733. [Google Scholar] [CrossRef]
- Zheng, S.P.; Li, J.; Yu, C.L.; Zhou, Q.L.; Hu, L.L.; Chen, D.P. Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach. Ceram. Int. 2017, 43, 5837–5841. [Google Scholar] [CrossRef]
- Qian, Q.; Yang, Z.M. Yb3+-doped phosphate glass fiber and 1.06 μm single-frequency fiber laser. Acta Optica Sinica 2010, 30, 1904–1909. [Google Scholar] [CrossRef]
- Fu, S.J.; Shi, W.; Feng, Y.; Zhang, L.; Yang, Z.M.; Xu, S.H.; Zhu, X.S.; Norwood, R.A.; Peyghambarian, N. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B 2017, 34, 49–62. [Google Scholar] [CrossRef]
- Wang, N.N.; Wang, X.L.; Hu, X.H.; Zhang, T.; Yuan, H.; Zhang, W.; Li, F.; Wang, Y.S.; Zhao, W. 41.8 W output power, 200 kHz repetition rate ultra-fast laser based on Yb:YAG single crystal fiber (SCF) amplifier. Opt. Laser Technol. 2020, 127, 106202. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lu, Y.K.; Chen, J.C.; Hsu, Y.C.; Huang, Y.M.; Huang, S.L.; Cheng, W.H. Broadband emission from Cr-doped fibers fabricated by drawing tower. Opt. Express 2006, 14, 8492–8497. [Google Scholar] [CrossRef]
- Dragic, D.P.; Ballato, J.; Hawkins, T.; Foy, P. Feasibility study of Yb:YAG-derived silicate fibers with large Yb content as gain media. Opt. Mater. 2012, 34, 1294–1298. [Google Scholar] [CrossRef]
- Jia, M.; Wen, J.X.; Pan, X.P.; Zhang, L.; Yuan, J.; Huang, Y.; Zhang, X.B.; He, L.F.; Pang, F.F.; Wang, T.Y. Flexible scintillation silica fiber with engineered nanocrystals for remote real-time X-ray detection. ACS Appl. Mater. Interfaces 2022, 14, 1362–1372. [Google Scholar] [CrossRef]
- Fang, Z.J.; Zheng, S.P.; Peng, W.C.; Zhang, H.; Ma, Z.J.; Dong, G.P.; Feng, Z.S.; Chen, D.P.; Qiu, J.R. Ni2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment. Opt. Express 2015, 23, 28258–28263. [Google Scholar] [CrossRef]
- Fang, Z.J.; Li, Y.; Zhang, F.T.; Ma, Z.J.; Dong, G.P.; Qiu, J.R. Enhanced sunlight excited 1 μm emission in Cr3+–Yb3+ codoped transparent glass-ceramics containing Y3Al5O12 nanocrystals. J. Am. Ceram. Soc. 2014, 98, 1105–1110. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Costa, F.M.; Nogueira, R.N.; Graca, M.P.F. Lithium niobate bulk crystallization promoted by CO2 laser radiation. Appl. Surf. Sci. 2012, 258, 9457–9460. [Google Scholar] [CrossRef]
- Augustyn, E.; Zelechower, M.; Stroz, D.; Chraponski, J. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers. Opt. Mater. 2012, 34, 944–950. [Google Scholar] [CrossRef]
- Kang, S.L.; Fang, Z.J.; Huang, X.J.; Chen, Z.; Yang, D.D.; Xiao, X.R.; Qiu, J.R.; Dong, G.P. Precisely controllable fabrication of Er3+-doped glass ceramic fibers: Novel mid-infrared fiber laser materials. J. Mater. Chem. C 2017, 5, 4549–4556. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.W.; Li, J.; Xiao, X.S.; Ma, Z.J.; Guo, H.T.; Dong, G.P.; Xu, S.H.; Qiu, J.R. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser. J. Am. Ceram. Soc. 2019, 102, 2551–2557. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Liu, Z.J.; Cong, Z.H.; Qin, Z.G.; Wang, S.; Jia, Z.X.; Li, C.Z.; Qin, G.S.; Gao, X.B.; Zhang, X.Y. All-fiber-integrated Yb:YAG-derived silica fiber laser generating 6 W output power. Opt. Express 2019, 27, 3791–3798. [Google Scholar] [CrossRef]
- Zhang, X.J.; Ma, Z.Y.; Yuan, Z.Y.; Su, M. Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing. Adv. Mater 2008, 20, 1310–1314. [Google Scholar] [CrossRef]
- Jia, M.; Wen, J.X.; Luo, W.Y.; Dong, Y.H.; Pang, F.F.; Chen, Z.Y.; Peng, G.D.; Wang, T.Y. Improved scintillating properties in Ce: YAG derived silica fiber with the reduction from Ce4+ to Ce3+ ions. J. Lumin 2020, 221, 117063. [Google Scholar] [CrossRef]
- Wan, Y.; Wen, J.X.; Dong, Y.H.; Jiang, C.; Jia, M.; Tang, F.Z.; Chen, N.; Zhao, Z.W.; Huang, S.J.; Pang, F.F.; et al. Exceeding 50% slope efficiency DBR fiber laser based on a Yb-doped crystal-derived silica fiber with high gain per unit length. Opt. Express 2020, 28, 23771–23783. [Google Scholar] [CrossRef]
- Pan, X.P.; Dong, Y.H.; Jia, M.; Wen, J.X.; Su, C.Y.; Shang, Y.N.; Zhang, X.B.; Pang, F.F.; Wang, T.Y. Temperature-induced PbS quantum dots with tunable broadband wavelength grown by atomic layer deposition. Appl. Surf. Sci. 2021, 546, 149086. [Google Scholar] [CrossRef]
- Baranov, A.V.; Bogdanov, K.V.; Ushakova, E.V.; Cherevkov, S.A.; Fedorov, A.V.; Tscharntke, S. Comparative analysis of Raman spectra of PbS macro-and nanocrystals. Opt. Spectrosc. 2010, 109, 268–271. [Google Scholar] [CrossRef]
- Kaindl, R.; Tobbens, D.M.; Kahlenberg, V. DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7. J. Raman Spectrosc. 2011, 42, 78–85. [Google Scholar] [CrossRef]
- Tian, Z.L.; Zheng, L.Y.; Li, Z.J.; Li, J.L.; Wang, J.Y. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J. Eur. Ceram. Soc. 2016, 36, 2813–2823. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Zhang, P.; Zhou, X.F.; Qiu, B.B.; Kong, C.G.; Lu, G.W. Raman spectra study on lattice vibration and thermal conductivity of MMTN and MMTWD crystals. J. Synth. Cryst. 2013, 42, 933–937. [Google Scholar]
- Dong, H.H.; Chen, Y.G.; Jiao, Y.; Zhou, Q.L.; Cheng, Y.; Zhang, H.; Lu, Y.J.; Wang, S.K.; Yu, C.L.; Hu, L.L. Nanocrystalline Yb: YAG-doped silica glass with good transmittance and significant spectral performance enhancements. Nanomaterials 2022, 12, 1263. [Google Scholar] [CrossRef]
- Murata, T.; Mazeno, K.; Morinaga, K. Matrix effect on local structure surrounding Yb3+ and spontaneous emission probability in oxide glasses. Sci. Technol. Adv. Mat. 2002, 3, 85–90. [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, L.F.; Almeida, R.M. Sol–gel-derived Yb:YAG polycrystalline ceramics for laser applications. J. Sol.-Gel. Sci. Technol. 2017, 83, 436–446. [Google Scholar] [CrossRef]
- Mao, Q.N.; Lan, B.J.; Zhou, S.F. Crystallization control in Ni2+-doped glass-ceramics for broadband near-infrared luminesce. J. Am. Ceram. Soc. 2020, 103, 2569–2574. [Google Scholar] [CrossRef]
Elements | wt.% | Oxides | wt.% |
---|---|---|---|
O | 43.74 | ||
Al | 14.37 | Al2O3 | 27.14 |
Si | 22.85 | SiO2 | 48.96 |
Y | 16.89 | Y2O3 | 21.45 |
Yb | 2.15 | Yb2O3 | 2.45 |
Total | 100.00 | Total | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, K.; Wen, J.; Wan, Y.; Wu, Y.; Pang, F.; Wang, T. Heat-Induced Emission Enhancement in a Yb:YAG Crystal-Derived Silica Fiber. Photonics 2022, 9, 706. https://doi.org/10.3390/photonics9100706
Zou K, Wen J, Wan Y, Wu Y, Pang F, Wang T. Heat-Induced Emission Enhancement in a Yb:YAG Crystal-Derived Silica Fiber. Photonics. 2022; 9(10):706. https://doi.org/10.3390/photonics9100706
Chicago/Turabian StyleZou, Kai, Jianxiang Wen, Ying Wan, Yan Wu, Fufei Pang, and Tingyun Wang. 2022. "Heat-Induced Emission Enhancement in a Yb:YAG Crystal-Derived Silica Fiber" Photonics 9, no. 10: 706. https://doi.org/10.3390/photonics9100706
APA StyleZou, K., Wen, J., Wan, Y., Wu, Y., Pang, F., & Wang, T. (2022). Heat-Induced Emission Enhancement in a Yb:YAG Crystal-Derived Silica Fiber. Photonics, 9(10), 706. https://doi.org/10.3390/photonics9100706