First Demonstration and Comparison of 5 kW Monolithic Fiber Laser Oscillator Pumped by 915 nm and 981 nm LDs
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Laser Output Performance Pumped with 915 nm LDs
3.2. Laser Output Performance Pumped with 981 nm LDs
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zervas, M.N.; Codemard, C.A. High power fiber lasers: A review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Richardson, D.J.; Nilsson, J.; Clarkson, W.A. High power fiber lasers: Current status and future perspectives. J. Opt. Soc. Am. B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Zervas, M.N. High power ytterbium-doped fiber lasers—Fundamentals and applications. Int. J. Mod. Phys. B 2014, 28, 1442009. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High-power fibre lasers. Nat. Photonics 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Shima, K.; Ikoma, S.; Uchiyama, K.; Takubo, Y.; Kashiwagi, M.; Tanaka, D. 5-KW single stage all-fiber Yb-doped single-mode fiber laser for materials processing. In Proceedings of the Fiber Lasers XV: Technology and Systems, San Francisco, CA, USA, 27 January–1 February 2018. [Google Scholar] [CrossRef]
- Yang, B.; Shi, C.; Zhang, H.; Ye, Q.; Pi, H.; Tao, R.; Wang, X.; Ma, P.; Leng, J.; Chen, Z.; et al. Monolithic fiber laser oscillator with record high power. Laser Phys. Lett. 2018, 15, 75106. [Google Scholar] [CrossRef]
- Ye, Y.; Xi, X.; Shi, C.; Zhang, H.; Yang, B.; Wang, X.; Zhou, P.; Xu, X. Experimental study of 5-kW High-Stability monolithic fiber laser oscillator with or without external feedback. IEEE Photonics J. 2019, 11, 1503508. [Google Scholar] [CrossRef]
- Krämer, R.G.; Möller, F.; Matzdorf, C.; Goebel, T.A.; Strecker, M.; Heck, M.; Richter, D.; Plötner, M.; Schreiber, T.; Tünnermann, A.; et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power. Opt. Lett. 2020, 45, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Guo, C.; Zhao, P.; Tao, R.; Shu, Q.; Lin, H.; Wang, J.; Liao, R. A simple O-shaped cylinder fiber laser without inter-cladding-power-strippers. In Proceedings of the Advanced Lasers, High-Power Lasers, and Applications XII, Nantong, China, 10–20 October 2021. [Google Scholar] [CrossRef]
- Leidner, J.P.; Marciante, J.R. Three fiber designs for mitigating thermal mode instability in high-power fiber amplifiers. Opt. Express 2020, 28, 28502. [Google Scholar] [CrossRef] [PubMed]
- Naderi, S.; Dajani, I.; Madden, T.; Robin, C. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations. Opt. Express 2013, 21, 16111. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Tao, R.; Li, C.; Lin, H.; Wang, Y.; Guo, C.; Wang, J.; Jing, F.; Tang, C. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier. Sci. Rep. 2019, 9, 9396. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, C.; Stihler, C.; Limpert, J. Transverse mode instability. Adv. Opt. Photonics 2020, 12, 429–484. [Google Scholar] [CrossRef]
- Jianjun, W.; Yu, L.; Min, L.; Xi, F.; Qiuhui, C.; Chun, Z.; Cong, G.; Rumao, T.; Honghuan, L.; Feng, J. Ten-year review and prospect on mode instability research of fiber lasers. High Power Laser Part. Beams 2020, 32, 49–60. [Google Scholar] [CrossRef]
- Khush, B.; Matthias, S.; Jason, H.; Sean, C.; Christian, D.; Robert, A.; Eric, H. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. In Proceedings of the Fiber Lasers XI: Technology, Systems, and Applications, San Francisco, CA, USA, 1–6 February 2014. [Google Scholar]
- Wan, Y.; Xi, X.; Yang, B.; Zhang, H.; Wang, X. Enhancement of TMI threshold in Yb-Doped fiber laser by optimizing pump wavelength. IEEE Photonics Technol. Lett. 2021, 33, 656–659. [Google Scholar] [CrossRef]
- Yang, B.; Wang, P.; Zhang, H.; Xi, X.; Shi, C.; Wang, X.; Xu, X. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability. Opt. Express 2021, 29, 26366. [Google Scholar] [CrossRef] [PubMed]
- Hejaz, K.; Shayganmanesh, M.; Rezaei-Nasirabad, R.; Roohforouz, A.; Azizi, S.; Abedinajafi, A.; Vatani, V. Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers. Opt. Lett. 2017, 42, 5274–5277. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Yang, B.; Xi, X.; Zhang, H.; Wang, P.; Wang, X.; Xu, X. Comparison and Optimization on Transverse Mode Instability of Fiber Laser Amplifier Pumped by Wavelength-Stabilized and Non-Wavelength-Stabilized 976 nm Laser Diode. IEEE Photonics J. 2022, 14, 1503905. [Google Scholar] [CrossRef]
- Wallace, J. High-Power Fiber Lasers Techniques and Accessories. Available online: https://www.ipgphotonics.com/cn/619/Widget/High-power+fiber+lasers%3A+techniques+and+accessories.pdf (accessed on 20 September 2022).
- Fan, T.Y. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 567–577. [Google Scholar] [CrossRef]
- Ye, Y.; Yang, B.; Wang, P.; Zeng, L.; Xi, X.; Shi, C.; Zhang, H.; Wang, X.; Zhou, P.; Xu, X. Industrial 6 kW high-stability single-stage all-fiber laser oscillator based on conventional large mode area ytterbium-doped fiber. Laser Phys. 2021, 31, 35104. [Google Scholar] [CrossRef]
Symbol | Physical Quantity | Symbol | Physical Quantity |
---|---|---|---|
N | Numbers of signal light wavelengths | Effective mode area | |
n | Ordinal number of signal light wavelengths | m | Ordinal number of pump light wavelengths |
Emission cross section of the nth signal light | Emission cross section of the mth pump light | ||
Absorption cross section of the nth signal light | Absorption cross section of the mth pump light | ||
Loss coefficient of signal light | Loss coefficient of pump light | ||
Number of ground state particles | Number of excited particles | ||
Signal light wavelength | Pump wavelength | ||
Pump light filling factor | Signal light filling factor | ||
Planck constant | Light speed | ||
Frequency of pump light | Frequency of signal light | ||
Inner cladding area for transmitting pump light | Dopant concentration of ytterbium ion | ||
Luminous intensity of signal light |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Wang, P.; Yang, B.; Zhang, H.; Xi, X.; Wang, X.; Xu, X. First Demonstration and Comparison of 5 kW Monolithic Fiber Laser Oscillator Pumped by 915 nm and 981 nm LDs. Photonics 2022, 9, 716. https://doi.org/10.3390/photonics9100716
Wen Y, Wang P, Yang B, Zhang H, Xi X, Wang X, Xu X. First Demonstration and Comparison of 5 kW Monolithic Fiber Laser Oscillator Pumped by 915 nm and 981 nm LDs. Photonics. 2022; 9(10):716. https://doi.org/10.3390/photonics9100716
Chicago/Turabian StyleWen, Yujun, Peng Wang, Baolai Yang, Hanwei Zhang, Xiaoming Xi, Xiaolin Wang, and Xiaojun Xu. 2022. "First Demonstration and Comparison of 5 kW Monolithic Fiber Laser Oscillator Pumped by 915 nm and 981 nm LDs" Photonics 9, no. 10: 716. https://doi.org/10.3390/photonics9100716
APA StyleWen, Y., Wang, P., Yang, B., Zhang, H., Xi, X., Wang, X., & Xu, X. (2022). First Demonstration and Comparison of 5 kW Monolithic Fiber Laser Oscillator Pumped by 915 nm and 981 nm LDs. Photonics, 9(10), 716. https://doi.org/10.3390/photonics9100716