Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering
Abstract
:1. Introduction
2. Simulation Models
3. Simulation Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.; Oh, K.; Choi, H.K.; Lee, S.G.; Youn, H.J.; Lee, H.L.; Jeong, D.H. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Ma, L.; Hu, C.; Liu, T.; Sun, S.; Liu, X.; Guan, M. Simultaneous quantitative detection of IL-6 and PCT using SERS magnetic immunoassay with sandwich structure. Nanotechnology 2021, 32, 255702. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Xie, X.J.; Xu, J.H.; Wu, Y.M.; Hong, M.H.; Liu, X.G. Plasmonic bimetallic nanodisk arrays for DNA conformation sensing. Nanoscale 2019, 11, 19291–19296. [Google Scholar] [CrossRef] [PubMed]
- Vráblová, M.; Koutník, I.; Smutná, K.; Marková, D.; Veverková, N. Combined SPRi sensor for simultaneous detection of nitrate and ammonium in wastewater. Sensors 2021, 21, 725. [Google Scholar] [CrossRef]
- Zuo, T.; Goldwyn, H.J.; Isaacoff, B.P.; Masiello, D.J.; Biteen, J.S. Rotation of single-molecule emission polarization by plasmonic nanorods. J. Phys. Chem. Lett. 2019, 10, 5047–5057. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; León-Pérez, F.; Pelton, M.; Lee, I.H.; Oh, S.H. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 2021, 15, 125–130. [Google Scholar] [CrossRef]
- Chu, Y.; Banaee, M.G.; Crozier, K.B. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 2010, 4, 2804–2810. [Google Scholar] [CrossRef]
- Galvan, D.D.; Špačková, B.; Slabý, J.; Sun, F.; Ho, Y.H.; Homola, J.; Yu, Q. Surface enhanced Raman scattering (SERS) on gold nanohole arrays in symmetrical dielectric environments exhibiting electric field extension. J. Phys. Chem. C 2016, 120, 25519–25529. [Google Scholar] [CrossRef]
- Yu, H.; Xian, Z.; Emilie, R.; Zhai, L.; Wang, X. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale 2018, 10, 4267–4275. [Google Scholar]
- Qi, Z.Q.; Yao, J.; Zhao, L.L.; Cui, Y.P.; Lu, C.G. Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region. Photonics Res. 2015, 3, 313. [Google Scholar] [CrossRef]
- Feng, K.; Chen, Z.Y.; Chen, Z.B.; Shen, J.X.; Li, H.L. Composite structure of Ag colloidal particles and Au sinusoidal nanograting with large-scale ultra-high field enhancement for SERS detection. Photonics 2021, 8, 415. [Google Scholar] [CrossRef]
- Banaee, M.G.; Crozier, K.B. Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 2011, 5, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Saikin, S.K.; Chu, Y.Z.; Rappoport, D.; Crozier, K.B.; Guzik, A. Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates. J. Phys. Chem. Lett. 2010, 1, 2740–2746. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, Y.; Fan, C.; Liang, E.; Li, Y.; Ding, P. Unmodified hot spot in hybridized nanorod dimer for extended surface-enhanced Raman scattering. J. Phys. Chem. Solids 2020, 136, 109125. [Google Scholar] [CrossRef]
- Alam, K.; Kabusure, K.M.; Asamoah, B.O.; Nuutinen, T.; Baah, M.; Mohamed, S.; Matikainen, A.; Heikkinen, J.; Rekola, H.; Roussey, M.; et al. Double resonant plasmonic lattices for Raman studies. Nanoscale 2020, 12, 23166. [Google Scholar] [CrossRef]
- Shioi, M.; Jans, H.; Lodewijks, K.; Van Dorpe, P.; Lagae, L.; Kawamura, T. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications. Appl. Phys. Lett. 2014, 104, 243102. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.Y.; Mei, L.; Sun, J.; Jiang, R.B. Nanostructures composed of dual plasmonic materials exhibiting high thermal stability and SERS enhancement. Part. Part. Syst. Char. 2021, 38, 2000321. [Google Scholar] [CrossRef]
- Ye, Y.; Schletz, D.; Reif, J.; Winkler, F.; Kirchner, R. Influences on plasmon resonance linewidth in metal insulator metal structures obtained via colloidal self-assembly. ACS Appl. Mater. Inter. 2020, 12, 56281. [Google Scholar]
- Wei, W.; Yan, X.; Shen, B.; Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 2019, 14, 246–253. [Google Scholar] [CrossRef]
- Zhou, H.; Jie, G.; Xu, K.; Zhe, L.; Tang, J.; Man, S. Bistable enhanced total reflection in Kretschmann configuration containing a saturable gain medium. Opt. Express 2018, 26, 5253. [Google Scholar] [CrossRef]
- Min, B.; Ostby, E.; Sorger, V.; Ulin-Avila, E.; Lan, Y.; Zhang, X.; Vahala, K. High-Q surface plasmon polariton whispering gallery microcavity. Nature 2009, 457, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Bandaru, P.R. Interaction and hybridization of orthogonal Fabry-Pérot like surface plasmon modes in metal-dielectric grating structures. Opt. Express 2020, 28, 3541. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, P.; Li, Q.; Zhang, Y.; Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 2021, 230, 1165. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Lu, C.G.; Qi, Z.Q.; Hu, X.F.; Ni, Z.H.; Cui, Y.P. Selectively enhanced Raman scattering with triple-resonance nanohole arrays. Opt. Commun. 2019, 452, 494–498. [Google Scholar] [CrossRef]
- Anna, L.; Angela, D.; Lee, W.; Patrick, A.; Felix, B.; Rohit, C.; Javier, A.; Baumberg, J.J. Anomalous spectral shift of near- and far-field plasmonic resonance in nanogaps. ACS Photonics 2016, 3, 471–477. [Google Scholar]
- Kristensen, P.T.; Van Vlack, C.; Hughes, S. Generalized effective mode volume for leaky optical cavities. Opt. Lett. 2012, 37, 1649–1651. [Google Scholar] [CrossRef] [Green Version]
- Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G.A.E.; Moshchalkov, V.V.; Van Dorpe, P.; Nordlander, P.; Maier, S.A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 2010, 4, 1664–1670. [Google Scholar] [CrossRef]
- Du, M.Y.; Shen, Z. Enhanced and tunable double Fano resonances in plasmonic metasurfaces with nanoring dimers. J. Phys. D Appl. Phys. 2021, 54, 145106. [Google Scholar] [CrossRef]
λ/nm | Veff | Q | Q/Veff |
---|---|---|---|
766 | 1.55 × 10−4 | 58.46 | 3.77 × 105 |
858 | 1.46 × 10−4 | 70.83 | 4.85 × 105 |
932 | 0.94 × 10−4 | 51.44 | 5.47 × 105 |
Single bowtie | 3.34 × 10−4 | 6.80 | 2.03 × 104 |
Reference | Structure | GSERS | Q | Experimental Verification |
---|---|---|---|---|
[13] 2010 | Nanodisk array and Gold film | 2.5 × 106 | ~30 | Yes |
[12] 2011 | Mixed dimer array | 1.06 × 105 | ~10 | Yes |
[16] 2014 | Nanodisk array and Gold film | 7.80 × 107 | ~20 | Yes |
[25] 2019 | Nanohole array and Silver film | 4.36 × 107 | ~30 | Yes |
[29] 2021 | Nanoring dimer array cavity | 6.71 × 108 | ~10 | No |
Our structure | Bowtie hole array and Silver film | 5.39 × 108 | 70.8 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Li, J.; Chen, P.; Zhang, L.; Ji, K. Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering. Photonics 2022, 9, 755. https://doi.org/10.3390/photonics9100755
Qi Z, Li J, Chen P, Zhang L, Ji K. Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering. Photonics. 2022; 9(10):755. https://doi.org/10.3390/photonics9100755
Chicago/Turabian StyleQi, Zhengqing, Jinhuan Li, Peng Chen, Lingling Zhang, and Ke Ji. 2022. "Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering" Photonics 9, no. 10: 755. https://doi.org/10.3390/photonics9100755
APA StyleQi, Z., Li, J., Chen, P., Zhang, L., & Ji, K. (2022). Tunable High-Q Factor Substrate for Selectively Enhanced Raman Scattering. Photonics, 9(10), 755. https://doi.org/10.3390/photonics9100755