Mesotronics: Some New, Unusual Optical Effects
Abstract
:1. Introduction
2. Mie Resonance-Driven Dielectric Nanophotonics
3. Dielectric Mesotronics
4. The Anomalous Apodization Effect in Mesoscale Gratings
5. High Order Fano-Resonances and Extreme Effects in Field Localization
6. Mesoscale Particle-Based Super-Resolution and High-Speed Communications
7. Photonic Hook Based High-Contrast Subwavelength Imaging
8. Reverse Optical Energy Flow in a Perforated Spherical Particle
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirchain, R.; Kimerling, L. A roadmap for nanophotonics. Nat. Photon. 2007, 1, 303–305. [Google Scholar] [CrossRef]
- McGurn, A. Nanophotonics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Ditlbacher, H.; Galler, N.; Koller, D.; Hohenau, A.; Leitner, A.; Aussenegg, F.; Krenn, J. Coupling dielectric waveguide modes to surface plasmon polaritons. Opt. Express 2008, 16, 10455–10464. [Google Scholar] [CrossRef]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photon. 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, M. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light Sci. Appl. 2015, 4, e294. [Google Scholar] [CrossRef] [Green Version]
- Tonkaev, P.; Kivshar, Y. All-dielectric resonant metaphotonics: Opinion. Opt. Mater. Express 2022, 12, 2879–2885. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Cheng, H.; Chen, S. Dielectric resonance-based optical metasurfaces: From fundamentals to applications. iScience 2020, 23, 101868. [Google Scholar] [CrossRef]
- Bahng, J.; Jahani, S.; Montjoy, D.; Yao, T.; Kotov, N.; Marandi, A. Mie resonance engineering in meta-shell supraparticles for nanoscale nonlinear optics. ACS Nano 2020, 14, 17203–17212. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yang, Z.; Jiang, R.; Zhuo, X.; Xie, Y.; Wang, J.; Lin, H. Dielectric nanoresonators for light manipulation. Phys. Rep. 2017, 701, 1–50. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Miroshnichenko, A.; Brongersma, A.; Kivshar, Y.; Lukyanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [PubMed]
- Khurgin, J. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6. [Google Scholar] [CrossRef]
- Kivshar, Y.; Miroshnichenko, A. Meta-Optics with Mie Resonances. Opt. Photonics News 2017, 28, 24–31. [Google Scholar] [CrossRef]
- Kruk, S.; Kivshar, Y. Functional Meta-Optics and Nanophotonics Governed by Mie Resonances. ACS Photonics 2017, 4, 2638–2649. [Google Scholar] [CrossRef] [Green Version]
- Kivshar, Y. All-optical meta-optics and nonlinear nanophotonics. Natl. Sci. Rev. 2018, 5, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.; Miroshnichenko, A.; Fu, Y.; Zhang, J.; Luk’yanchuk, B. Magnetic light. Sci. Rep. 2012, 2, 492. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Kuester, E.F.; Baker-Jarvis, J.; Kabos, P. A double negative composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 2003, 51, 2596–2603. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 2011, 5, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Mosallaei, H. Physical configuration and performance modeling of all-dielectric metamaterials. Phys. Rev. B 2008, 77, 045104. [Google Scholar] [CrossRef]
- Koshelev, K.; Kivshar, Y. Dielectric resonant metaphotonics. ACS Photonics 2021, 8, 102–112. [Google Scholar] [CrossRef]
- Kivshar, Y. The rise of Mie-tronics. Nano Lett. 2022, 22, 3513–3515. [Google Scholar] [CrossRef]
- Popa, B.-I.; Cummer, S.A. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys. Rev. Lett. 2008, 100, 207401. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 2009, 12, 60–69. [Google Scholar] [CrossRef]
- Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [Green Version]
- Engheta, N. Optical Metatronics, in CLEO:2011—Laser Applications to Photonic Applications; OSA Technical Digest; Optica Publishing Group: Washington, DC, USA, 2011. [Google Scholar]
- Alu, A.; Engheta, N. All-Optical Metamaterial Circuit Board at the Nanoscale. Phys. Rev. Lett. 2009, 103, 143902. [Google Scholar] [CrossRef] [Green Version]
- Engheta, N. Taming Light at the Nanoscale. Phys. World 2010, 23, 341. [Google Scholar] [CrossRef]
- Li, Y.; Liberal, I.; Giovampaola, C.; Engheta, N. Waveguide metatronics: Lumped circuitry based on structural dispersion. Sci. Adv. 2016, 2, e1501790. [Google Scholar] [CrossRef] [Green Version]
- Luk’yanchuk, B.; Paniagua-Domınguez, R.; Minin, I.V.; Minin, O.V.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef] [Green Version]
- Minin, O.V.; Minin, I.V. Optical Phenomena in Mesoscale Dielectric Particles. Photonics 2021, 8, 591. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Bekirov, A.; Wang, Z.; Minin, I.V.; Minin, O.V.; Fedyanin, A. Optical phenomena in dielectric spheres with the size of several light wavelength (Review). Phys. Wave Phenom. 2022, 30, 217–241. [Google Scholar] [CrossRef]
- Keen, B.; Porter, A. On the Diffraction of Light by Particles Comparable with the Wave-length. Roy. Soc. Proc. A. 1913, 89, 370. [Google Scholar]
- Kolwas, M. Scattering of Light on Droplets and Spherical Objects: 100 Years of Mie Scattering. Comp. Methods Sci. Techn. 2010, 2, 107–113. [Google Scholar] [CrossRef]
- Egri, A.; Horvath, A.; Kriska, G.; Horvath, G. Optics of sunlit water drops on leaves: Conditions underwhich sunburn is possible. New Phytol. 2010, 185, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Minin, O.V.; Minin, I.V. Unusual optical effects in dielectric mesoscale particles. In SPIE Proceedings Volume 12193, Laser Physics, Photonic Technologies, and Molecular Modeling; 121930E; Russian Federation: Saratov, Russia, 2021. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Luk’yanchuk, B.S. Mesotronic era of dielectric photonics. In SPIE Proceedings Volume 12152, Mesophotonics: Physics and Systems at Mesoscale; 121520D; SPIE Photonics Europe: Strasbourg, France, 2022. [Google Scholar] [CrossRef]
- Yue, L.; Yan, B.; Monks, J.; Dhama, R.; Wang, Z.; Minin, O.V.; Minin, I.V.V. Intensity-Enhanced Apodization Effect on an Axially Illuminated Circular-Column Particle-Lens. Ann. Phys. 2017, 530, 1700384. [Google Scholar] [CrossRef] [Green Version]
- Yue, L.; Yan, B.; Monks, J.; Wang, Z.; Tung, N.; Lam, V.; Minin, O.V.; Minin, I.V. A millimetre-wave cuboid solid immersion lens with intensity-enhanced amplitude mask apodization. J. Infrared Milli. Terahz Waves 2018, 39, 546–552. [Google Scholar] [CrossRef] [Green Version]
- Geints, Y.; Minin, O.V.; Minin, I.V. Apodization-Assisted Subdiffraction Near-Field Localization in 2D Phase Diffraction Grating. Ann. Phys. 2019, 531, 1900033. [Google Scholar] [CrossRef]
- Geints, Y.; Minin, O.V.; Minin, I.V.; Zemlyanov, A. Self-images contrast enhancement for displacement Talbot lithography by means of composite mesoscale amplitude-phase masks. J. Opt. 2020, 22, 015002. [Google Scholar] [CrossRef]
- Chausse, P.; Shields, P. Spatial periodicities inside the Talbot effect: Understanding, control and applications for lithography. Opt. Express 2021, 29, 27628. [Google Scholar] [CrossRef]
- Wang, Z.; Luk’yanchuk, B.; Yue, L.; Yan, B.; Monks, J.; Dhama, R.; Minin, O.V.; Minin, I.V.; Huang, S.; Fedyanin, A. High order Fano resonances and giant magnetic fields in dielectric microspheres. Sci. Rep. 2019, 9, 20293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, L.; Wang, Z.; Yan, B.; Monks, J.; Joya, Y.; Dhama, R.; Minin, O.V.; Minin, I.V. Super-enhancement focusing of teflon spheres. Ann. Phys. 2020, 532, 2000373. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Zhou, S. Peculiarities of Extreme Electromagnetic Fields Generation in a Dielectric Mesoscale Sphere Taking into Account the Environment. Technol. Phys. Lett. 2022, 48, 41–44. [Google Scholar]
- Minin, I.V.; Zhou, S.; Minin, O.V. Super-resonance effect for high-index sphere immersed in water. arXiv 2022, arXiv:2205.03863. [Google Scholar]
- Rocha, A.; Silva, J.; Lima, S.; Nunes, L.; Andrade, L. Measurements of refractive indices and thermo-optical coefficients using a white-light Michelson interferometer. Appl. Opt. 2016, 55, 6639. [Google Scholar] [CrossRef] [PubMed]
- Minin, I.V.; Minin, O.V.; Zhou, S. Superresonance effect in the micron sphere of borosilicate glass in the optical range. Optoelectron. Instrument. Proc. 2022, accepted. [Google Scholar]
- Fu, Y.H.; Zhang, J.B.; Yu, Y.F.; Luk’yanchuk, B. Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures. ACS Nano 2012, 6, 5130–5137. [Google Scholar] [CrossRef] [PubMed]
- Ginn, J.; Brener, I. Realizing Optical Magnetism from Dielectric Metamaterials. Phys. Rev. Lett. 2012, 108, 097402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Panday, A.; Xu, Y.; Chen, X.; Chen, L.; Ji, C.; Guo, L. Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles. Phys. Rev. Lett. 2018, 120, 253902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Ma, X. Achieving extreme light confinement in low-index dielectric resonators through quasi-bound states in the continuum. Opt. Lett. 2021, 46, 6087–6090. [Google Scholar] [CrossRef] [PubMed]
- Dave, J. Scattering of Visible Light by Large Water Spheres. Appl. Opt. 1969, 8, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Cappa, C.; Wilson, K.; Messer, B.; Saykally, R.; Cohen, R. Optical cavity resonances in water micro-droplets: Implications for shortwave cloud forcing. Geophys. Res. Lett. 2004, 31, L10205. [Google Scholar] [CrossRef] [Green Version]
- Minin, O.V.; Minin, I.V.; Song, Z. High-order Fano resonance in a low-index dielectric mesosphere. JETP Lett. 2022, 116, 3. [Google Scholar]
- Minin, O.V.; Minin, I.V. 3D diffractive lenses to overcome the 3D Abbe subwavelength diffraction limit. Chin. Opt. Lett. 2014, 12, 060014. [Google Scholar] [CrossRef]
- Benincasa, D.; Barber, P.; Zhang, J.; Hsieh, W.; Chang, R. Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers. Appl. Opt. 1987, 26, 1348–1356. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, B.H.; Kim, W.Y.; Min, S.K.; Kim, Y.; Jouravlev, M.V.; Bose, R.; Kim, K.S.; Hwang, I.C.; Kaufman, L.J.; et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 2009, 460, 498–501. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.; Li, Y.; Hong, M. Microsphere enhanced optical imaging and patterning: From physics to applications. Appl. Phys. Rev. 2019, 6, 021304. [Google Scholar] [CrossRef]
- Perrin, S.; Li, H.; Lecler, S.; Montgomery, P. Unconventional magnification behaviour in microsphere-assisted microscopy. Opt. Laser Techn. 2019, 117, 40–43. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, H.; Li, P.; Wang, X.; Wang, F.; Shi, J.; Liu, Z.; Yu, P.; Yang, W.; Wang, Y.; et al. Microsphere-based super-resolution imaging for visualized nanomanipulation. ACS Appl. Mater. Interfaces 2020, 12, 48093–48100. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yu, H.; Wen, Y.; Zhang, T.; Li, P.; Wang, F.; Liu, L. Enhanced high-quality super-resolution imaging in air using microsphere lens groups. Opt. Lett. 2020, 45, 2981–2984. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, T.; Gong, Z.; Li, Y.; Zhang, Y.; Li, B. Subwavelength imaging and detection using adjustable and movable droplet microlenses. Photon. Res. 2020, 8, 225–234. [Google Scholar] [CrossRef]
- Li, P.; Li, G.; Yu, H.; Wang, F.; Liu, L.; Li, W. Advances in Dielectric Microspherical Lens Nanoscopy. IEEE Nanotech. Mag. 2020, 15, 38-C3. [Google Scholar]
- Trukhova, A.; Pavlova, M.; Sinitsyna, O.; Yaminsky, I. Microlens-assisted microscopy for biology and medicine. J. Biophotonics 2022, 15, e202200078. [Google Scholar] [CrossRef]
- Barton, J.; Alexander, D.; Schaub, S. Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance. J. Appl. Phys. 1989, 65, 2900. [Google Scholar] [CrossRef]
- Darafsheh, A. Microsphere-assisted microscopy. J. Appl. Phys. 2022, 131, 031102. [Google Scholar] [CrossRef]
- Schuller, J.; Barnard, E.; Cai, W.; Jun, Y.; White, J.; Brongersma, M. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193. [Google Scholar] [CrossRef]
- Yang, S.; Ye, Y.; Shi, Q.; Zhang, J. Converting Evanescent Waves into Propagating Waves: The Super-Resolution Mechanism in Microsphere-Assisted Microscopy. J. Phys. Chem. C 2020, 124, 25951–25956. [Google Scholar] [CrossRef]
- Novitsky, A.; Repän, T.; Malureanu, R.; Takayama, O.; Shkondin, E.; Lavrinenko, A. Search for superresolution in a metamaterial solid immersion lens. Phys. Rev. A 2019, 99, 023835. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Pena, V.; Beruete, M.; Minin, I.V.; Minin, O.V. Terajets produced by dielectric cuboids. Appl. Phys. Lett. 2014, 105, 084102. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.; Hisatake, S.; Minin, I.V.; Minin, O.V.; Nagatsuma, T. Three dimensional direct observation of Gouy phase shift in a terajet produced by a dielectric cuboid. Appl. Phys. Lett. 2016, 108, 191102. [Google Scholar] [CrossRef]
- Pacheco-Pena, V.; Beruete, M.; Minin, I.V.; Minin, O.V. Multifrequency focusing and wide angular scanning of terajets. Opt. Lett. 2015, 40, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Minin, I.V.; Minin, O.V.; Pacheco-Peña, V.; Beruete, M. Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode. Opt. Lett. 2015, 40, 2329–2332. [Google Scholar] [CrossRef] [Green Version]
- Minin, I.V.; Minin, O.V. Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Islam, M.; Cordeiro, C.; Nine, J.; Sultana, J.; Cruz, A.; Dinovitser, A.; Ng, B.W.H.; Ebendorff-Heidepriem, H.; Losic, D.; Abbot, D. Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology. IEEE Access 2020, 8, 97205. [Google Scholar] [CrossRef]
- Abufadda, M.; Mbithi, N.; Polónyi, G.; Nugraha, P.; Buzády, A.; Hebling, J.; Molnár, L.; Fülöp, J. Absorption of Pulsed Terahertz and Optical Radiation in Earthworm Tissue and Its Heating Efect. J. Infrared Millim. Terahertz Waves 2021, 42, 1065–1077. [Google Scholar]
- Chudpooti, N.; Duangrit, N.; Burnett, A.; Freeman, F.; Gill, T.; Phongcharoenpanich, C.; Imberg, U.; Torrungrueng, T.; Akkaraekthalin, P.; Robertson, I.; et al. Wideband dielectric properties of silicon and glass substrates for terahertz integrated circuits and microsystems. Mater. Res. Express 2021, 8, 056201. [Google Scholar] [CrossRef]
- Pham, H.; Hisatake, S.; Minin, O.V.; Nagatsuma, T.; Minin, I.V. Enhancement of Spatial Resolution of Terahertz Imaging Systems Based on Terajet Generation by Dielectric Cube. APL Photonics 2017, 2, 56106. [Google Scholar] [CrossRef] [Green Version]
- Mittleman, D.; Gupta, M.; Neelamani, R.; Baraniuk, R.; Rudd, J.; Koch, M. Recent advances in terahertz imaging. Appl. Phys. B Lasers Opt. 1999, 68, 1085–1094. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. System of microwave radiovision of three-dimensional objects in real time. In Subsurface Sensing Technologies and Applications II; SPIE: Bellingham, WA, USA, 2000. [Google Scholar]
- Chernomyrdin, N.; Kucheryavenko, A.; Katyba, G.; Karalkin, P.; Parfenov, V.; Gryadunova, A.; Smolyanskaya, O.; Minin, O.V.; Minin, I.V.; Karasik, A.; et al. A potential of terahertz solid immersion microscopy for visualizing sub-wavelength-scale tissue spheroids. In Unconventional Optical Imaging; SPIE: Bellingham, WA, USA, 2018. [Google Scholar]
- D’Antuono, R.; Bowen, J. Towards super-resolved terahertz microscopy for cellular imaging. J. Microsc. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zhang, Y.; Fan, M.; Sun, F.; Liu, L. Research progress of terahertz super-resolution imaging. Chin. Opt. 2022, 15, 405–417. [Google Scholar]
- Thomas, K. THz Communications—A Candidate for a 6G Radio? In Proceedings of the 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC-2019), Lisbon, Portugal, 24–27 November 2019. [Google Scholar]
- Samura, Y.; Horio, K.; Minin, O.V.; Minin, I.V.; Hisatake, S. Characterization of Mesoscopic Dielectric Cuboid Antenna at Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1828–1832. [Google Scholar] [CrossRef]
- Yamada, K.; Samura, Y.; Minin, O.V.; Kanno, A.; Sekine, S.; Nakajima, J.; Minin, I.V.; Hisatake, S. Short-range Wireless Transmitter Using Mesoscopic Dielectric Cuboid Antenna in 300-GHz Band. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Milan, Italy, 12–14 January 2021; pp. 195–198. [Google Scholar] [CrossRef]
- Samura, Y.; Yamada, K.; Minin, O.V.; Minin, I.V.; Kanno, A.; Sekine, N.; Nakajima, J.; Hisatake, S. High-gain and Low-profile Dielectric Cuboid Antenna at J-band. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Yamada, K.; Samura, Y.; Minin, O.V.; Kanno, A.; Sekine, N.; Nakajima, J.; Minin, I.V.; Hisatake, S. Short-range Wireless Transmission in the 300-GHz Band Using Low-profile Wavelength-scaled Dielectric Cuboid Antennas. Front. Comms. Net 2021, 2, 702968. [Google Scholar] [CrossRef]
- Tajima, T.; Song, H.-J.; Ajito, K.; Yaita, M.; Kukutsu, N. 300-GHz Step-Profiled Corrugated Horn Antennas Integrated in LTCC. IEEE Trans. Antennas Propagat. 2014, 62, 5437–5444. [Google Scholar] [CrossRef]
- Yi, H.; Qu, S.-W.; Ng, K.-B.; Chan, C.H.; Bai, X. 3-D Printed Millimeter-Wave and Terahertz Lenses with Fixed and Frequency Scanned Beam. IEEE Trans. Antennas Propagat. 2016, 64, 442–449. [Google Scholar] [CrossRef]
- Zhang, B.; Zhan, Z.; Cao, Y.; Gulan, H.; Linnér, P.; Sun, J.; Zwick, T.; Zirath, H. Metallic 3-D Printed Antennas for Millimeter- and Submillimeter Wave Applications. IEEE Trans. THz Sci. Technol. 2016, 6, 592–600. [Google Scholar] [CrossRef]
- Mistry, K.K.; Lazaridis, P.I.; Zaharis, Z.D.; Akinsolu, M.O.; Liu, B.; Loh, T. Accurate Antenna Gain Estimation Using the Two-Antenna Method. In Proceedings of the Antennas and Propagation Conference 2019 (APC-2019), Birmingham, UK, 11–12 November 2019. [Google Scholar]
- Minin, I.V.; Minin, O.V. Method for Imaging Objects with Subdiffraction Resolution and High Contrast. Patent of Russia 2021133612, 2021. [Google Scholar]
- Minin, I.V.; Minin, O.V. Terahertz microscopy with oblique subwavelength illumination in near field. Quantum Electron. 2022, 52, 13–16. [Google Scholar] [CrossRef]
- Aizawa, S.; Seto, K.; Tokunaga, E. External field response and applications of metal coated hemispherical Janus particles. Appl. Sci. 2018, 8, 653. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Price, C.-A.H.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus particles: Design, preparation, and biomedical applications. Mater. Today Bio. 2019, 4, 100033. [Google Scholar] [CrossRef] [PubMed]
- Marschelke, C.; Fery, A.; Synytska, A. Janus particles: From concepts to environmentally friendly materials and sustainable applications. Colloid. Polym. Sci. 2020, 298, 841–865. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, C.; Cristóbal, G.; Bueno, G.; Blanco, S.; Borrego-Ramos, M.; Olenici, A.; Pedraza, A.; Ruiz-Santaquiteria, J. Oblique illumination in microscopy: A quantitative evaluation. Micron 2018, 105, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Dhalla, A.; Izatt, J. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples. Biomed. Opt. Express 2012, 3, 1841–1854. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, R.; Maruyama, R.; Tamada, Y.; Arimoto, H.; Watanabe, W. Contrast enhancement by oblique illumination microscopy with an LED array. Optik 2019, 183, 92–98. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Z.; Minin, O.V.; Minin, I.V. Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres. Nanomaterials 2019, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, Y. Ultra-sharp nanofocusing of graded index photonic crystals-based lenses perforated with optimized single defect. Opt. Mater. Express 2016, 6, 1231. [Google Scholar] [CrossRef]
- Yue, L.; Yan, B.; Monks, J.; Dhama, R.; Jiang, C.; Minin, O.V.; Minin, I.V.; Wang, Z. Full three-dimensional Poynting vector flow analysis of great field-intensity enhancement in specifically sized spherical-particles. Sci. Rep. 2019, 9, 20224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geints, Y.; Minin, I.V.; Minin, O.V. Whispering-gallery modes promote enhanced optical backflow in a perforated dielectric microsphere. Opt. Lett. 2022, 47, 1786–1789. [Google Scholar] [CrossRef] [PubMed]
- Berry, M. Quantum backflow, negative kinetic energy, and optical retropropagation. J. Phys. A 2010, 43, 415302. [Google Scholar] [CrossRef]
- Yuan, G.; Rogers, E.T.F.; Zheludev, N.I. “Plasmonics” in free space: Observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light Sci. Appl. 2019, 8, 2. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Yuan, G.H. Optical superoscillation technologies beyond the diffraction limit. Nat. Rev. Phys. 2021, 4, 16–32. [Google Scholar] [CrossRef]
- Wang, H.; Hao, J.; Zhang, B.; Han, C.; Zhao, C.; Shen, Z.; Xu, J.; Ding, J. Donut-like photonic nanojet with reverse energy flow. Chin. Opt. Lett. 2021, 19, 102602. [Google Scholar] [CrossRef]
- Videen, G. Light scattering from a sphere on or near a surface. J. Opt. Soc. Am. A 1991, 8, 483–489. [Google Scholar] [CrossRef]
- Mazilu, M.; Baumgartl, J.; Kosmeier, S.; Dholakia, K. Optical Eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt. Express 2011, 19, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Baumgartl, J.; Kosmeier, S.; Mazilu, M.; Rogers, E.; Zheludev, N.; Dholakia, K. Far field subwavelength focusing using optical eigenmodes. Appl. Phys. Lett. 2011, 98, 181109. [Google Scholar] [CrossRef] [Green Version]
- Minin, O.V.; Zhou, S.; Cao, Y.; Baranov, P.; Minin, I.V. Subwavelength field localization based on dielectric mesoscale particle with single and blind nanohole array. In Mesophotonics: Physics and Systems at Mesoscale; SPIE: Bellingham, WA, USA, 2022. [Google Scholar]
- Soskin, M.; Boriskina, S.; Chong, Y.; Dennis, M.; Desyatnikov, A. Singular optics and topological photonics. J. Opt. 2017, 19, 1010401. [Google Scholar] [CrossRef]
- Knitter, S.; Liew, S.; Xiong, W.; Guy, M.; Solomon, G.; Cao, H. Topological defect lasers. J. Opt. 2016, 18, 014005. [Google Scholar] [CrossRef] [Green Version]
- Geints, Y.; Minin, I.V.; Minin, O.V. Simulation of enhanced optical trapping in a perforated dielectric microsphere amplified by resonant energy backflow. Opt. Commun. 2022, 524, 128779. [Google Scholar] [CrossRef]
- Matsusaka, S.; Kozawa, Y.; Sato, S. Micro-hole drilling by tightly focused vector beams. Opt. Lett. 2018, 43, 1542–1545. [Google Scholar] [CrossRef] [PubMed]
- Arango, F.; Alpeggiani, F.; Conteduca, D.; Opheij, A.; Chen, A.; Abdelrahman, M.; Krauss, T.; Alù, A.; Monticone, F.; Kuipers, L. Cloaked near-field probe for non-invasive near-field optical microscopy. Optica 2022, 9, 684–691. [Google Scholar] [CrossRef]
- Yan, Y.; Li, L.; Feng, C.; Guo, W.; Lee, S.; Hong, M. Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum. ACS Nano 2014, 8, 1809–1816. [Google Scholar] [CrossRef]
- Minin, O.V.; Zhou, S.; Liu, C.; Kong, J. and Minin, I.V. Magnetic concentric hot-circles generation at optical frequencies in all-dielectric mesoscale Janus particles. Nanomaterials 2022, 12, 3428. [Google Scholar] [CrossRef]
- Spesyvtseva, S.; Dholakia, D. Trapping in a Material World. ACS Photonics 2016, 3, 719–736. [Google Scholar] [CrossRef] [Green Version]
- Bradac, C. Nanoscale Optical Trapping: A Review. Adv. Opt. Mater. 2018, 6, 1800005. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Ghosh, A. Next generation optical nanotweezers for dynamic manipulation: From surface to bulk. Langmuir 2020, 36, 5691–5708. [Google Scholar] [CrossRef]
- Minin, O.V.; Minin, I.V.; Cao, Y. Optical magnet for nanoparticles manipulations based on optical vacuum cleaner concept. In Saratov Fall Meeting 2020: Optical and Nanotechnologies for Biology and Medicine; SPIE: Bellingham, WA, USA, 2021; p. 11845. [Google Scholar]
- Sokolenko, B.; Shostka, N.; Karakchieva, O. Optical tweezers and manipulators. Modern concepts and future prospects. Phys. Usp. 2022, 65, 8. [Google Scholar]
- Li, X.; Chen, Z.; Taflove, A.; Backman, V. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets. Opt. Express 2005, 13, 526–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gérard, D.; Devilez, A.; Aouani, H.; Stout, B.; Bonod, N.; Wenger, J.; Popov, E.; Rigneault, H. Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere. J. Opt. Soc. Am. B 2009, 26, 1473–1478. [Google Scholar] [CrossRef]
- Sergeeva, K.; Tutov, M.; Voznesenskiy, S.; Shamich, N.; Mironenko, N.; Sergeev, A. Highly-sensitive fluorescent detection of chemical compounds via photonic nanojet excitation. Sens. Actuat. B Chem. 2020, 305, 127354. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V. Comment on “Functional dielectric microstructure for photonic nanojet generation in reflection mode”. Opt. Mater. 2021, 112C, 110770. [Google Scholar] [CrossRef]
- Xu, Y.; Ji, D.; Song, H.; Zhang, N.; Hu, Y.; Anthopoulos, T.D.; di Fabrizio, E.M.; Xiao, S.; Gan, Q. Light-Matter Interaction within Extreme Dimensions: From Nanomanufacturing to Applications. Adv. Opt. Mater. 2018, 6, 1800444. [Google Scholar] [CrossRef]
- Armani, A.; Kulkarni, R.; Fraser, S.; Flagan, R.; Vahala, K. Label-free, single-molecule detection with optical microcavities. Science 2007, 317, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.Y.; Yip, G.G.K.; Zhou, L.M.; Qiu, C.W.; Shi, J.; Zhou, Y.; Mao, H.; Tsia, K.K.; Wong, K.K.Y. Hysteresis and balance of backaction force on dielectric particles photothermally mediated by photonic nanojet. Nanophotonics 2022, 11, 4231–4244. [Google Scholar] [CrossRef]
- Ross, M.; Blaber, M.; Schatz, G. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 2014, 5, 4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karabchevsky, A. Development of mesoscale photonics and plasmonics. In Photonics and Plasmonics at the Mesoscale; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Parvathi, N.S.; Wang, H.; Trisno, J.; Ruan, Q.; Rezaei, S.; Simpson, R.; Yang, J. 3D Printing Mesoscale Optical Components with a Low-Cost Resin Printer Integrated with a Fiber-Optic Taper. ACS Photonics 2022, 9, 2024–2031. [Google Scholar]
- Minin, I.V.; Minin, O.V.; Yue, L. Electromagnetic properties of Pyramids from positions of photonics. Russ. Phys. J. 2020, 62, 1763–1769. [Google Scholar] [CrossRef]
- Ge, S.; Liu, W.; Zhang, J.; Huang, Y.; Xi, Y.; Yang, P.; Sun, X.; Li, S.; Lin, D.; Zhou, D.; et al. Novel Bilayer Micropyramid Structure Photonic Nanojet for Enhancing a Focused Optical Field. Nanomaterials 2021, 11, 2034. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chen, Y.; Wang, T.; Liu, J.; Fan, Y.; Yang, Y.; Xiao, J.; Huang, Y. Single-mode lasing in an AlGaInAs/InP dual-port square microresonator. Opt. Lett. 2022, 47, 3672–3675. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.; Huang, Y.; Yang, Y.; Ma, X.; Xiao, J.; Du, Y. Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides. Phys. Rev. A 2017, 95, 013833. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Xiao, J.; Xiao, Z.; Yang, Y.; Huang, Y. Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl. 2022, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Surdo, S.; Duocastella, M.; Diaspro, A. Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. Micromachines 2021, 12, 256. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Pacheco-Peña, V.; Beruete, M. All-dielectric periodic terajet waveguide using an array of coupled cuboids. Appl. Phys. Lett. 2015, 106, 254102. [Google Scholar] [CrossRef]
- Suárez, I.; Ferrando, A.; Marques-Hueso, J.; Díez, A.; Abargues, R.; Rodríguez-Cantó, P.J.; Martínez-Pastor, J.P. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics 2017, 6, 1109–1120. [Google Scholar] [CrossRef]
- Han, Z.; Bozhevolnyi, S. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 2013, 76, 016402. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Peña, V.; Minin, I.V.; Minin, O.V.; Beruete, M. Increasing Surface Plasmons Propagation via Photonic Nanojets with periodically spaced 3D dielectric cuboids. Photonics 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Kapitonov, A.; Astratov, V. Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett. 2007, 32, 409–411. [Google Scholar] [CrossRef]
- Yang, S.; Astratov, V. Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08dB per sphere. Appl. Phys. Lett. 2008, 92, 261111. [Google Scholar] [CrossRef]
- Darafsheh, A.; Astratov, V. Periodically focused modes in chains of dielectric spheres. Appl. Phys. Lett. 2012, 100, 61123–611234. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Garcıa, M.; Galisteo-Lopez, J.; Lopez, C. Light confinement by two-dimensional arrays of dielectric spheres. Phys. Rev. B 2012, 85, 235145. [Google Scholar] [CrossRef] [Green Version]
- Zhan, A.; Fryett, T.; Colburn, S.; Majumdar, A. Inverse design of optical elements based on arrays of dielectric spheres. Appl. Opt. 2018, 57, 1437–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgakov, E.; Maksimov, D. Optical response induced by bound states in the continuum in arrays of dielectric spheres. J. Opt. Soc. Am. B 2018, 35, 2443–2452. [Google Scholar] [CrossRef] [Green Version]
- Kapitonov, A. Nanojet-induced modes in one-dimensional colloidal photonic crystals. In Proceedings of the Proceedings of the International Conference on Nanomeeting 2009, Minsk, Belarus, 26–29 May 2009; pp. 152–155. [Google Scholar]
- Smith, M.; Zeng, W.; Lafalce, E.; Yu, S.; Zhang, S.; Vardeny, Z.; Tsukruk, V. Coupled Whispering Gallery Mode Resonators via Template-Assisted Assembly of Photoluminescent Microspheres. Adv. Func. Mat. 2019, 30, 1902520. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minin, I.V.; Minin, O.V. Mesotronics: Some New, Unusual Optical Effects. Photonics 2022, 9, 762. https://doi.org/10.3390/photonics9100762
Minin IV, Minin OV. Mesotronics: Some New, Unusual Optical Effects. Photonics. 2022; 9(10):762. https://doi.org/10.3390/photonics9100762
Chicago/Turabian StyleMinin, Igor V., and Oleg V. Minin. 2022. "Mesotronics: Some New, Unusual Optical Effects" Photonics 9, no. 10: 762. https://doi.org/10.3390/photonics9100762
APA StyleMinin, I. V., & Minin, O. V. (2022). Mesotronics: Some New, Unusual Optical Effects. Photonics, 9(10), 762. https://doi.org/10.3390/photonics9100762