A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hegazy, E.A.; Sasuga, T.; Nishii, M.; Seguchi, T. Irradiation effects on aromatic polymers: 1. Gas evolution by gamma irradiation. Polymer 1992, 33, 2897–2903. [Google Scholar] [CrossRef]
- McJury, M.; Oldham, M.; Cosgrove, V.P.; Murphy, P.S.; Doran, S.; Leach, M.O.; Webb, S. Radiation dosimetry using polymer gels: Methods and applications. Br. J. Radiol. 2000, 73, 919–929. [Google Scholar] [CrossRef]
- Marzougui, K.; Hamzaoui, A.H.; Farah, K.; Nessib, N.B. Electrical conductivity study of gamma-irradiated table sugar for high-dose dosimetry. Radiat. Meas. 2008, 43, 1254–1257. [Google Scholar] [CrossRef]
- Santos, T.; Ventura, T.; do Carmo Lopes, M. A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiat. Phys. Chem. 2021, 179, 109217. [Google Scholar] [CrossRef]
- Schreiner, L.J. Review of Fricke gel dosimeters. J. Phys. Conf. Ser. 2004, 3, 9–21. [Google Scholar] [CrossRef]
- Whittaker, B. A new PMMA dosimeter for low doses and low temperatures. Radiat. Phys. Chem. 1990, 35, 699–702. [Google Scholar] [CrossRef]
- Biramontri, S.; Haneda, N.; Tachibana, H.; Kojima, T. Effect of low irradiation temperature on the gamma-ray response of dyed and undyed PMMA dosimeters. Radiat. Phys. Chem. 1996, 48, 105–109. [Google Scholar] [CrossRef]
- Galante, A.M.S.; Villavicencio, A.L.C.H.; Campos, L.L. Preliminary investigations of several new dyed PMMA dosimeters. Radiat. Phys. Chem. 2004, 71, 393–396. [Google Scholar] [CrossRef]
- Alqathami, M.; Adamovics, J.; Benning, R.; Qiao, G.; Geso, M.; Blencowe, A. Evaluation of ultra-sensitive leucomalachite dye derivatives for use in the PRESAGE® dosimeter. Radiat. Phys. Chem. 2013, 85, 204–209. [Google Scholar] [CrossRef]
- Vo, P.P.; Doan, H.N.; Kinashi, K.; Sakai, W.; Tsutsumi, N.; Huynh, D.P. X-ray Visualization and Quantification Using Fibrous Color Dosimeter Based on Leuco Dye. Appl. Sci. 2020, 10, 3798. [Google Scholar] [CrossRef]
- Soliman, Y.S.; Tadros, S.M.; Beshir, W.B.; Saad, G.R.; Gallo, S.; Ali, L.I.; Naoum, M.M. Study of Ag nanoparticles in a polyacrylamide hydrogel dosimeters by optical technique. Gels 2022, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Delage, M.È.; Lecavalier, M.È.; Larivière, D.; Allen, C.N.; Beaulieu, L. Dosimetric properties of colloidal quantum dot-based systems for scintillation dosimetry. Phys. Med. Biol. 2019, 64, 095027. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xie, J.; Wang, X.Y.; Wang, Y.; Li, Z.J.; Diefenbach, K.; Pan, Q.J.; Qian, Y.; Wang, J.Q.; Wang, S.; et al. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nat. Commun. 2021, 12, 2798. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Hou, H.; Hou, Y.C.; Zheng, Z.; Ma, Y.; Zhou, Z.; Guo, X.; Pan, Q.J.; Wang, Y.; Qian, Y.; et al. A new concept of radiation detection based on a fluorochromic and piezochromic nanocluster. J. Am. Chem. Soc. 2022, 144, 3449–3457. [Google Scholar] [CrossRef]
- Zheng, Z.; Qiu, J.; Lu, H.; Wang, J.Q.; Lin, J. Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Adv. 2022, 12, 12878–12881. [Google Scholar] [CrossRef]
- Dey, S.; Fan, C.; Gothelf, K.V.; Li, J.; Lin, C.; Liu, L.; Liu, N.; Nijenhuis, M.A.D.; Saccà, B.; Simmel, F.C.; et al. DNA origami. Nat. Rev. Methods Primers 2021, 1, 13. [Google Scholar] [CrossRef]
- Dutta, P.K.; Zhang, Y.; Blanchard, A.T.; Ge, C.; Rushdi, M.; Weiss, K.; Zhu, C.; Ke, Y.; Salaita, K. Programmable multivalent DNA-origami tension probes for reporting cellular traction forces. Nano Lett. 2018, 18, 4803–4811. [Google Scholar] [CrossRef]
- Ochmann, S.E.; Joshi, H.; Büber, E.; Franquelim, H.G.; Stegemann, P.; Saccà, B.; Keyser, U.F.; Aksimentiev, A.; Tinnefeld, P. DNA origami voltage sensors for transmembrane potentials with single-molecule sensitivity. Nano Lett. 2021, 21, 8634–8641. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, L.; Guo, R.; Zhang, Y.; Li, F.; Li, M.; Li, J.; Shi, J.; Qu, F.; Zuo, X.; et al. DNA origami nanocalipers for pH sensing at the nanoscale. Chem. Commun. 2022, 58, 3673–3676. [Google Scholar] [CrossRef]
- de Groot, F.M.H.; Gottarelli, G.; Masiero, S.; Proni, G.; Spada, G.P.; Dolci, N. Towards radiation-sensitive quasi-biological display. Angew. Chem. Int. Ed. Engl. 1997, 36, 954–955. [Google Scholar] [CrossRef]
- Kolyvanova, M.A.; Klimovich, M.A.; Shibaeva, A.V.; Koshevaya, E.D.; Bushmanov, Y.A.; Belousov, A.V.; Kuzmin, V.A.; Morozov, V.N. Cholesteric liquid-crystalline DNA—A new type of chemical detector of ionizing radiation. Liq. Cryst. 2022, 49, 1359–1366. [Google Scholar] [CrossRef]
- Kolyvanova, M.A.; Belousov, A.V.; Kuzmin, V.A.; Morozov, V.N. Modification of radiosensitivity of DNA cholesteric dispersion using dimethyl sulfoxide. High Energy Chem. 2022, 56, 388–390. [Google Scholar] [CrossRef]
- Trends in Radiation Sterilization of Health Care Products; International Atomic Energy Agency: Vienna, Austria, 2008.
- Zhang, Y.; Fu, Q.; Huang, T.; Liu, Y.; Chen, G.; Li, S. Ionizing radiation-induced DNA damage responses affect cell compressibility. Biochem. Biophys. Res. Commun. 2022, 603, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-González, G.; Pérez-Plasencia, C. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol. Lett. 2017, 13, 3982–3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavragani, I.V.; Nikitaki, Z.; Kalospyros, S.A.; Georgakilas, A.G. Ionizing radiation and complex DNA damage: From prediction to detection challenges and biological significance. Cancers 2019, 11, 1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofińska, K.; Wilkosz, N.; Szymoński, M.; Lipiec, E. Molecular spectroscopic markers of DNA damage. Molecules 2020, 25, 561. [Google Scholar] [CrossRef] [Green Version]
- Kuimova, M.K.; Cowan, A.J.; Matousek, P.; Parker, A.W.; Sun, X.Z.; Towrie, M.; George, M.W. Monitoring the direct and indirect damage of DNA bases and polynucleotides by using time-resolved infrared spectroscopy. Proc. Natl. Acad. Sci. USA 2006, 103, 2150–2153. [Google Scholar] [CrossRef] [Green Version]
- Synytsya, A.; Alexa, P.; de Boer, J.; Loewe, M.; Moosburger, M.; Würkner, M.; Volka, K. Raman spectroscopic study of calf thymus DNA: An effect of proton- and γ-irradiation. J. Raman Spectrosc. 2007, 38, 1406–1415. [Google Scholar] [CrossRef]
- Shaw, C.P.; Jirasek, A. The use of ultraviolet resonance Raman spectroscopy in the analysis of ionizing-radiation-induced damage in DNA. Appl. Spectrosc. 2009, 63, 412–422. [Google Scholar] [CrossRef]
- Ward, J.F.; Urist, M.M. γ-irradiation of aqueous solutions of polynucleotides. Int. J. Radiat. Biol. 1967, 12, 209–218. [Google Scholar] [CrossRef]
- Rafi, A.; Weiss, J.J.; Wheeler, C.M. Effect of γ-radiation on aqueous solutions of DNA’s of different base composition. Biochim. Biophys. Acta 1968, 169, 230–240. [Google Scholar] [CrossRef]
- Uyesugi, D.F.; Trumbore, C.N. The effect of low ionic strength on the radiation chemistry and physical properties of calf thymus DNA. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1983, 44, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Tankovskaia, S.A.; Kotb, O.M.; Dommes, O.A.; Paston, S.V. Application of spectral methods for studying DNA damage induced by gamma-radiation, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 200, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Kotb, O.M.; Brozhik, D.S.; Verbenko, V.N.; Gulevich, E.P.; Ezhov, V.F.; Karlin, D.L.; Pak, F.A.; Paston, S.V.; Polyanichko, A.M.; Khalikov, A.I.; et al. Investigation of DNA damage induced by proton and gamma radiation. Biophysics 2021, 66, 202–208. [Google Scholar] [CrossRef]
- Nikitin, N.A.; Arkhipenko, M.V.; Dement’eva, O.V.; Kartseva, M.E.; Shishmakova, E.M.; Sanochkina, E.V.; Shiryaeva, E.S.; Kolyvanova, M.A.; Belousov, A.V.; Rudoy, V.M.; et al. Increased efficiency of radiation inactivation of virions by gold nanoparticles. Part. Part. Syst. Charact. in press. [CrossRef]
- Yevdokimov, Y.M.; Salyanov, V.I.; Semenov, S.V.; Skuridin, S.G. DNA Liquid-Crystalline Dispersions and Nanoconstructions; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011. [Google Scholar]
- Hissung, A.; Dertinger, H.; Heinrich, G. The action of ionizing radiation on DNA in the presence of quinacrine. I. UV absorption and fluorescence measurements. Radiat. Environ. Biophys. 1975, 12, 5–12. [Google Scholar] [CrossRef]
- Jorge, A.F.; Nunes, S.C.C.; Cova, T.F.G.G.; Pais, A.A.C.C. Cooperative action in DNA condensation. Curr. Opin. Colloid Interface Sci. 2016, 26, 66–74. [Google Scholar] [CrossRef]
- Yevdokimov, Y.; Skuridin, S.; Salyanov, V.; Semenov, S.; Kats, E. Liquid-crystalline dispersions of double-stranded DNA. Crystals 2019, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Keller, D.; Bustamante, C. Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 1986, 84, 2972–2980. [Google Scholar] [CrossRef]
- Shuryak, I.; Carlson, D.J.; Brown, J.M.; Brenner, D.J. High-dose and fractionation effects in stereotactic radiation therapy: Analysis of tumor control data from 2965 patients. Radiother. Oncol. 2015, 115, 327–334. [Google Scholar] [CrossRef]
- Ramroth, J.; Cutter, D.J.; Darby, S.C.; Higgins, G.S.; McGale, P.; Partridge, M.; Taylor, C.W. Dose and fractionation in radiation therapy of curative intent for non-small cell lung cancer: Meta-analysis of randomized trials. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 736–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roosen, J.; Klaassen, N.J.M.; Gotby, L.E.L.W.; Overduin, C.G.; Verheij, M.; Konijnenberg, M.W.; Nijsen, J.F.W. To 1000 Gy and back again: A systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3776–3790. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolyvanova, M.A.; Klimovich, M.A.; Belousov, A.V.; Kuzmin, V.A.; Morozov, V.N. A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application. Photonics 2022, 9, 787. https://doi.org/10.3390/photonics9110787
Kolyvanova MA, Klimovich MA, Belousov AV, Kuzmin VA, Morozov VN. A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application. Photonics. 2022; 9(11):787. https://doi.org/10.3390/photonics9110787
Chicago/Turabian StyleKolyvanova, Maria A., Mikhail A. Klimovich, Alexandr V. Belousov, Vladimir A. Kuzmin, and Vladimir N. Morozov. 2022. "A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application" Photonics 9, no. 11: 787. https://doi.org/10.3390/photonics9110787
APA StyleKolyvanova, M. A., Klimovich, M. A., Belousov, A. V., Kuzmin, V. A., & Morozov, V. N. (2022). A Principal Approach to the Detection of Radiation-Induced DNA Damage by Circular Dichroism Spectroscopy and Its Dosimetric Application. Photonics, 9(11), 787. https://doi.org/10.3390/photonics9110787