A Comparative Study of Ir(dmpq)2(acac) Doped CBP, mCP, TAPC and TCTA for Phosphorescent OLEDs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ink Formulation
2.2. PhOLED Fabrication
2.3. Thin Film and Device Characterization
3. Results and Discussion
3.1. Spectroscopic Ellipsometry
3.2. Photoluminescence
3.3. Atomic Force Microscopy
3.4. Electroluminescence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murawski, C.; Gather, M.C. Emerging Biomedical Applications of Organic Light-Emitting Diodes. Adv. Opt. Mater. 2021, 9, 269. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, X.; Ma, Y.; Peng, F.; Guo, T.; Jiang, J.-X.; Ying, L.; Wang, J.; Peng, J.; Cao, Y. Synthesis and characterization of highly efficient solution-processable orange Ir(III) complexes for phosphorescent OLED applications. Org. Electr. 2018, 57, 178–185. [Google Scholar] [CrossRef]
- Ma, D.; Tsuboi, T.; Qiu, Y.; Duan, L. Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices. Adv. Mater. 2017, 29, 1603253. [Google Scholar] [CrossRef]
- Kappaun, S.; Slugovc, C.; List, E.J.W. Phosphorescent organic light-emitting devices: Working principle and iridium based emitter materials. Int. J. Mol. Sci. 2008, 9, 1527–1547. [Google Scholar] [CrossRef] [Green Version]
- Gioti, M.; Tselekidou, D.; Panagiotidis, L.; Kyriazopoulos, V.; Simitzi, K.; Andreopoulou, A.K.; Kalitsis, J.K.; Gravalidis, C.; Logothetidis, S. Optical characterization of organic light-emitting diodes with selective red emission. Mater. Today Proc. 2021, 37, A39–A45. [Google Scholar] [CrossRef]
- Diouf, B.; Jeon, W.S.; Pode, R.; Kwon, J.H. Efficiency control in iridium complex-based phosphorescent light-emitting diodes. Adv. Mater. Sci. Eng. 2012, 2012, 794674. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.I.; Su, H.J.; Shu, C.F.; Luo, L.; Diau, W.-G.; Cheng, C.-H.; Duan, J.P.; Lee, G.-H. Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes. J. Mater. Chem. 2005, 15, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Longhi, E.; de Cola, L. Iridium(III) in Optoelectronic and Photonics Applications; Wiley: Hoboken, NJ, USA, 2017; p. 205. [Google Scholar]
- Park, G.Y.; Seo, J.H.; Kim, Y.K.; Kim, Y.S. Iridium(III) complexes with 6-pentafluorophenyl-2,4-diphenylquinolines for red OLEDs. Mol. Cryst. Liq. Cryst. 2007, 471, 293–303. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, D.; Li, J.; Li, H.; Ma, H.; Li, D.; Niu, R. Saturated red phosphorescent Iridium(III) complexes containing phenylquinoline ligands for efficient organic light-emitting diodes. Dyes Pigments 2020, 179, 108405. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, K.H.; Lee, S.J.; Seo, J.H.; Kim, Y.K.; Yoon, S.S. Highly efficient red phosphorescent OLEDs based on Ir(III) complexes with fluorine-substituted benzoylphenylpyridine ligand. Bull. Korean Chem. Soc. 2010, 31, 3711–3717. [Google Scholar] [CrossRef]
- Ilic, S.; Cairnie, D.R.; Bridgewater, C.M.; Morris, A.J. Investigation into dual emission of a cyclometalated iridium complex_ The role of ion-pairing. J. Photochem. Photobiol. 2021, 8, 100084. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, Y.; Cheng, J.; Li, J. A CBP derivative as bipolar host for performance enhancement in phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2013, 1, 757–764. [Google Scholar] [CrossRef]
- Cui, L.S.; Dong, S.C.; Liu, Y.; Li, Q.; Jiang, Z.Q.; Liao, L.S. A simple systematic design of phenylcarbazole derivatives for host materials to high-efficiency phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2013, 1, 3967–3975. [Google Scholar] [CrossRef]
- Bezvikonnyi, O.; Grybauskaite-Kaminskiene, G.; Volyniuk, D.; Simokaitiene, J.; Danyliv, Y.; Durgaryan, R.; Bucinskas, A.; Jatautienė, E.; Hladka, I.; Scholz, J.; et al. 3,3′-Bicarbazole-based compounds as bipolar hosts for green and red phosphorescent organic light-emitting devices. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2020, 261, 114662. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Quan, Y.; Li, L.; Ye, S.; Fan, Q.; Huang, W. High-efficiency solution-processed WOLEDs with very high color rendering index based on a macrospirocyclic oligomer matrix host. Opt. Mater. Express 2018, 8, 3208–3219. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Chen, Y.; Wang, J.; Lei, Z.; Lai, W.; Fan, Q.; Huang, W. Highly efficient red phosphorescent organic light-emitting devices based on solution-processed small molecular mixed-host. J. Lumin. 2015, 161, 300–305. [Google Scholar] [CrossRef]
- Yook, K.S.; Lee, J.Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 2014, 26, 4218–4233. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, Z.; Liu, A.; Meng, G.; Yuan, X.; Tang, H.; Hu, D.; Xie, Z.; Wang, J.; Hou, L. Structure effect of carbazole-oxadiazole based organic small molecule hosts on the solution-processed phosphorescent OLEDs performance. J. Lumin. 2018, 195, 31–39. [Google Scholar] [CrossRef]
- Lin, M.S.; Yang, S.J.; Chang, H.W.; Huang, Y.-H.; Tsai, Y.-T.; Wu, C.C.; Chou, S.-H.; Mondal, E.; Wong, K.-T. Incorporation of a CN group into mCP: A new bipolar host material for highly efficient blue and white electrophosphorescent devices. J. Mater. Chem. 2012, 22, 16114–16120. [Google Scholar] [CrossRef]
- Swayamprabha, S.S.; Krucaite, G.; Dubey, D.K.; Kesavan, K.K.; De, J.; Nagar, M.R.; Lee, H.; Sutkuviene, S.; Pal, S.; Chen, S.-Z.; et al. Wet process feasible novel fluorene-based molecular hole transporting layer for phosphorescent organic light emitting diodes. Opt. Mater. 2021, 120, 111410. [Google Scholar] [CrossRef]
- Schrögel, P.; Tomkevičiene, A.; Strohriegl, P.; Hoffmann, S.T.; Köhler, A.; Lennartz, C. A series of CBP-derivatives as host materials for blue phosphorescent organic light-emitting diodes. J. Mater. Chem. 2011, 21, 2266–2273. [Google Scholar] [CrossRef]
- Gioti, M.; Kokkinos, D.; Chaidou, C.I.; Laskarakis, A.; Andreopoulou, A.K.; Kallitsis, J.K.; Logothetidis, S. A comprehensive study of the optical properties of emitting polymers for efficient flexible OLED devices. Phys. Status Solidi A Appl. Mater. Sci. 2016, 213, 2947–2953. [Google Scholar] [CrossRef]
- Jellison, G.E.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
- Gong, S.; He, X.; Chen, Y.; Jiang, Z.; Zhong, C.; Ma, D.; Qin, J.; Yang, C. Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. J. Mater. Chem. 2012, 22, 2894–2899. [Google Scholar] [CrossRef]
- Chen, B.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Phosphonate substituted 4,4′-bis(N-carbazolyl)biphenyl with dominant electron injection/transport ability for tuning the single-layer device performance of self-host phosphorescent dendrimer. J. Mater. Chem. 2012, 22, 23680–23686. [Google Scholar] [CrossRef]
- Hu, J.; Hu, S.; Lu, C.; Huang, Y.; Xu, K.; Wang, X. Assistant dopant system in red phosphorescent OLEDs and its mechanism reveal. J. Lumin. 2018, 197, 187–192. [Google Scholar] [CrossRef]
- Han, L.; Yang, D.; Li, W.; Chu, B.; Chen, Y.; Su, Z.; Zhang, D.; Yan, F.; Wu, S.; Wang, J.; et al. Intramolecular energy transfer between the triplet of ancillary ligand and the metal to ligand charge transfer state existed in heterocyclometalated iridium (III) complexes. Appl. Phys. Lett. 2009, 94, 163303. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Humphry-Baker, R.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M. Highly phosphorescence iridium complexes and their application in organic light-emitting devices. J. Am. Chem. Soc. 2003, 125, 8790–8797. [Google Scholar] [CrossRef]
- Kim, O.Y.; Kim, B.S.; Lee, J.Y. High efficiency thermally activated delayed fluorescent devices using a mixed host of carbazole and phosphine oxide derived host materials. Synth. Met. 2015, 201, 49–53. [Google Scholar] [CrossRef]
- Sun, D.; Ren, Z.; Yan, S. Efficient triplet utilization in conventional solution-processed phosphorescent organic light emitting diodes using a thermal activated delayed fluorescence polymer as an assistant host. J. Mater. Chem. C 2018, 6, 4800–4806. [Google Scholar] [CrossRef]
- Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; di Marco, P. Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis ((di-4-tolylamino) phenyl) cyclohexane. Appl. Phys. Lett. 2000, 76, 2352–2354. [Google Scholar] [CrossRef]
- Zhang, X.F.; Cui, X.; Liu, Q.; Zhang, F. Photoinduced multi-electron transfer in the Dn-A system consisting of multi-phthalocyanines linked to one carbon nanotube. Phys. Chem. Chem. Phys. 2009, 11, 3566–3572. [Google Scholar] [CrossRef]
- Yang, X.; Huang, H.; Pan, B.; Aldred, M.P.; Zhuang, S.; Wang, L.; Chen, J.; Ma, D. Modified 4,4′,4″-Tri(N -carbazolyl)triphenylamine as a versatile bipolar host for highly efficient blue, orange, and white organic light-emitting diodes. J. Phys. Chem. C 2012, 116, 15041–15047. [Google Scholar] [CrossRef]
- Lin, Y.T.; Chen, L.Y.; Wu, C.C.; Wong, K.T.; Chen, R.T.; Chien, Y.Y. Influences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-Diarylfluorenes); Optics and Photonics Society of Iran (OPSI): Tehran, Iran, 2008; Volume 2. [Google Scholar]
- Laquai, F.; Park, Y.S.; Kim, J.J.; Basché, T. Excitation energy transfer in organic materials: From fundamentals to optoelectronic devices. Macromol. Rapid Commun. 2009, 30, 1203–1231. [Google Scholar] [CrossRef]
- Liu, H.M.; He, J.; Wang, P.F.; Xie, H.-Z.; Zhang, X.-H. High-efficiency polymer electrophosphorescent diodes based on an Ir (III) complex. Appl. Phys. Lett. 2005, 87, 221103. [Google Scholar] [CrossRef]
- Tselekidou, D.; Papadopoulos, K.; Kyriazopoulos, V.; Andrikopoulos, K.C.; Andreopoulou, A.K.; Kallitsis, J.K.; Laskarakis, A.; Logothetidis, S.; Gioti, M. Photophysical and electro-optical properties of copolymers bearing blue and red chromophores for single-layer white oleds. Nanomaterials 2021, 11, 2629. [Google Scholar] [CrossRef]
- Chen, F.C.; Chang, S.C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.; Kido, J. Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices. J. Polym. Sci. 2003, 41, 2681–2690. [Google Scholar] [CrossRef]
- Huang, S.P.; Jen, T.H.; Chen, Y.C.; Hsiao, A.E.; Yin, S.-H.; Chen, H.-Y.; Chen, S.-A. Effective shielding of triplet energy transfer to conjugated polymer by its dense side chains from phosphor dopant for highly efficient electrophosphorescence. J. Am. Chem. Soc. 2008, 130, 4699–4707. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Seo, J.H.; Kim, Y.K.; Ha, Y. Synthesis and photophysical studies of iridium complexes of new 2,3-diphenylquinoxaline derivatives for organic light-emitting diodes. J. Nanosci. Nanotechnol. 2009, 9, 7039–7043. [Google Scholar] [CrossRef]
- Anthopoulos, T.D.; Frampton, M.J.; Namdas, E.B.; Burn, P.L.; Samuel, I.D.W. Solution-processable red phosphorescent dendrimers for light-emitting device applications. Adv. Mater. 2004, 16, 557–560. [Google Scholar] [CrossRef]
Ir(dmpq)2(acac) Doped in | Thickness by SE (nm) | Root Mean Square Sq (nm) | Average Roughness Sa (nm) | Peak to Peak Sy (nm) |
---|---|---|---|---|
CBP | 73 | 0.30 | 0.24 | 3.07 |
mCP | 52 | 0.28 | 0.22 | 2.08 |
TAPC | 43 | 0.32 | 0.25 | 3.73 |
TCTA | 43 | 0.23 | 0.17 | 1.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tselekidou, D.; Panagiotidis, L.; Papadopoulos, K.; Kyriazopoulos, V.; Gioti, M. A Comparative Study of Ir(dmpq)2(acac) Doped CBP, mCP, TAPC and TCTA for Phosphorescent OLEDs. Photonics 2022, 9, 800. https://doi.org/10.3390/photonics9110800
Tselekidou D, Panagiotidis L, Papadopoulos K, Kyriazopoulos V, Gioti M. A Comparative Study of Ir(dmpq)2(acac) Doped CBP, mCP, TAPC and TCTA for Phosphorescent OLEDs. Photonics. 2022; 9(11):800. https://doi.org/10.3390/photonics9110800
Chicago/Turabian StyleTselekidou, Despoina, Lazaros Panagiotidis, Kyparisis Papadopoulos, Vasileios Kyriazopoulos, and Maria Gioti. 2022. "A Comparative Study of Ir(dmpq)2(acac) Doped CBP, mCP, TAPC and TCTA for Phosphorescent OLEDs" Photonics 9, no. 11: 800. https://doi.org/10.3390/photonics9110800
APA StyleTselekidou, D., Panagiotidis, L., Papadopoulos, K., Kyriazopoulos, V., & Gioti, M. (2022). A Comparative Study of Ir(dmpq)2(acac) Doped CBP, mCP, TAPC and TCTA for Phosphorescent OLEDs. Photonics, 9(11), 800. https://doi.org/10.3390/photonics9110800