Active Control of Electromagnetically Induced Transparency Analogy in Spoof Surface Plasmon Polariton Waveguide
Abstract
:1. Introduction
2. Structure and Simulation
3. Measurement and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, S.E. Electromagnetically induced transparency. Phys. Today 1997, 50, 36–42. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.F.; Fleischhauer, A.; Mair, A.; Walsworth, R.L.; Lukin, M.D. Storage of light in atomic vapor. Phys. Rev. Lett. 2001, 86, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzacca, G.; Cincotti, G.; Hingerl, K. Ultrafast switching by controlling Rabi splitting. Appl. Phys. Lett. 2007, 91, 231920. [Google Scholar] [CrossRef]
- Zhang, J.; Mu, N.; Liu, L.H.; Xie, J.H.; Feng, H.; Yao, J.Q.; Chen, T.; Zhu, W.R. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron. 2021, 185, 113241. [Google Scholar] [CrossRef]
- Lee, M.J.; Ruseckas, J.; Lee, C.Y.; Kudriasov, V.; Chang, K.F.; Cho, H.W.; Juzeliūnas, G.; Yu, I.A. Experimental demonstration of spinor slow light. Nat. Commun. 2014, 5, 5542. [Google Scholar] [CrossRef] [Green Version]
- Lukin, M.D.; Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 2001, 413, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Wang, Y.; Cai, W.; Xiao, L. Design and prediction of PIT devices through deep learning. Opt. Express 2022, 30, 14985–14997. [Google Scholar] [CrossRef]
- Xu, Q.; Sandhu, S.; Povinelli, M.L.; Shakya, J.; Fan, S.; Lipson, M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 2006, 96, 123901. [Google Scholar] [CrossRef]
- Zhang, Z.R.; Zhang, L.W.; Li, H.Q.; Chen, H. Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl. Phys. Lett. 2014, 104, 231114. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef] [Green Version]
- Papasimakis, N.; Fedotov, V.A.; Zheludev, N.I.; Prosvirnin, S.L. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 2008, 101, 253903. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Plum, E.; Menzel, C.; Rockstuhl, C.; Azad, A.K.; Cheville, R.A.; Lederer, F.; Zhang, W.; Zheludev, N.I. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 2009, 80, 153104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Z.; Shao, L.; Xiao, F.; Zhu, W. Active modulation of electromagnetically induced transparency analog in graphene-based microwave metamaterial. Carbon 2021, 183, 850–857. [Google Scholar] [CrossRef]
- Cai, W.; Xiao, B.; Yu, J.; Xiao, L. A compact graphene metamaterial based on electromagnetically induced transparency effect. Opt. Commun. 2020, 475, 126266. [Google Scholar] [CrossRef]
- Xiao, B.; Zhu, J.; Xiao, L. Tunable plasmon-induced transparency in graphene metamaterials with ring–semiring pair coupling structures. Appl. Opt. 2020, 59, 6041–6045. [Google Scholar] [CrossRef]
- Liu, K.; Lian, M.; Qin, K.; Zhang, S.; Cao, T. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface. Light Adv. Manuf. 2021, 2, 1. [Google Scholar] [CrossRef]
- Dhama, R.; Panahpour, A.; Pihlava, T.; Ghindani, D.; Caglayan, H. All-optical switching based on plasmon-induced Enhancement of Index of Refraction. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef]
- Manjappa, M.; Pitchappa, P.; Singh, N.; Wang, N.; Zheludev, N.I.; Lee, C.; Singh, R. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun. 2018, 9, 4056. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.G.; Bahk, Y.M.; Kim, D.S. Dynamic terahertz plasmonics enabled by phase-change materials. Adv. Opt. Mater. 2020, 8, 1900548. [Google Scholar] [CrossRef]
- Xia, S.; Zhai, X.; Wang, L.; Xiang, Y.; Wen, S. Plasmonically induced transparency in phase-coupled graphene nanoribbons. Phys. Rev. B 2022, 106, 075401. [Google Scholar] [CrossRef]
- Kekatpure, R.D.; Barnard, E.S.; Cai, W.; Brongersma, M.L. Phase-coupled plasmon induced transparency. Phys. Rev. Lett. 2010, 104, 243902. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.; Hu, X.Y.; Zhu, Y.; Sun, S.B.; Yang, H.; Gong, Q.H. Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity. Adv. Opt. Mater. 2014, 2, 320–325. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Sun, Y.; Shi, X.; Jiang, J.; Yang, Y.; Zhu, S.; Evers, J.; Chen, H. Electromagnetically-induced-transparency-like phenomenon with resonant meta-atoms in a cavity. Phys. Rev. A 2015, 92, 053824. [Google Scholar] [CrossRef]
- Berini, P.; De Leon, I. Surface plasmon polariton amplifiers and lasers. Nat. Photonics 2021, 6, 16–24. [Google Scholar] [CrossRef]
- Min, B.; Ostby, E.; Sorger, V.; Ulin-Avila, E.; Yang, L.; Zhang, X.; Vahala, K. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 2009, 457, 455–458. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Martín-Moreno, L.; Pendry, J.B. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. Pure Appl. Opt. 2005, 7, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Cui, T.J.; Martin-Cano, D.; Garcia-Vidal, F.J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.X.; Zhang, H.C.; Ma, H.F.; Jiang, W.X.; Cui, T.J. Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv. Opt. Mater. 2019, 7, 1800421. [Google Scholar] [CrossRef]
- Su, X.; Xu, Q.; Lu, Y.; Zhang, Z.; Xu, Y.; Zhang, X.; Li, Y.; Ouyang, C.; Deng, F.; Liu, Y.; et al. Gradient Index Devices for Terahertz Spoof Surface Plasmon Polaritons. ACS Photonics 2020, 7, 3305–3312. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, L.; Gao, F.; Luo, Y.; Zhang, B. Spoof plasmonics: From metamaterial concept to topological description. Adv. Mater. 2018, 30, 1706683. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz surface plasmonic waves: A review. Adv. Photonics 2020, 2, 1–19. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Tang, M.; He, P.; Niu, L.; Liu, L.; Lu, J.; Tang, W.; Mao, J.; Cui, T. Integrated multi-scheme digital modulations of spoof surface plasmon polaritons. Sci. China Inf. Sci. 2020, 63, 202302. [Google Scholar] [CrossRef]
- Zhang, H.C.; Cui, T.J.; Luo, Y.; Zhang, J.; Xu, J.; He, P.H.; Zhang, L.P. Active digital spoof plasmonics. Natl. Sci. Rev. 2020, 7, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Suh, W.; Joannopoulos, J.D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 2003, 20, 569–572. [Google Scholar] [CrossRef]
State | ω1 | ω2 | |||||
---|---|---|---|---|---|---|---|
ON | 5.33 | 5.43 | 0.81 | 0.052 | 0.017 | 0.020 | 0.28 |
OFF | 5.33 | 6.29 | 0.75 | 0.035 | 0.015 | 0.018 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Dong, L.; He, J.; Huang, Y.; Deng, F.; Liu, L.; Shi, Y.; Xu, Q.; Li, Y. Active Control of Electromagnetically Induced Transparency Analogy in Spoof Surface Plasmon Polariton Waveguide. Photonics 2022, 9, 833. https://doi.org/10.3390/photonics9110833
Su X, Dong L, He J, Huang Y, Deng F, Liu L, Shi Y, Xu Q, Li Y. Active Control of Electromagnetically Induced Transparency Analogy in Spoof Surface Plasmon Polariton Waveguide. Photonics. 2022; 9(11):833. https://doi.org/10.3390/photonics9110833
Chicago/Turabian StyleSu, Xiaoqiang, Lijuan Dong, Jiajun He, Yucong Huang, Fusheng Deng, Lifeng Liu, Yunlong Shi, Quan Xu, and Yanfeng Li. 2022. "Active Control of Electromagnetically Induced Transparency Analogy in Spoof Surface Plasmon Polariton Waveguide" Photonics 9, no. 11: 833. https://doi.org/10.3390/photonics9110833
APA StyleSu, X., Dong, L., He, J., Huang, Y., Deng, F., Liu, L., Shi, Y., Xu, Q., & Li, Y. (2022). Active Control of Electromagnetically Induced Transparency Analogy in Spoof Surface Plasmon Polariton Waveguide. Photonics, 9(11), 833. https://doi.org/10.3390/photonics9110833