Photodetector Based on Twisted Bilayer Graphene/Silicon Hybrid Slot Waveguide with High Responsivity and Large Bandwidth
Abstract
:1. Introduction
2. Device Design and Theoretical Calculation
2.1. The Theoretical Model of the TBG
2.2. The Design of Silicon/TBG Hybrid Photodetector
2.3. The Responsivity Calculation of the Silicon/TBG Photodetector
2.4. The Electrical-Optical Response Calculation of the Silicon/TBG Photodetector
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Fiber-Optic Communication Systems; John Wiley & Sons: New York, NY, USA, 2012; Volume 222. [Google Scholar]
- Zhang, L.; Udalcovs, A.; Lin, R.; Ozolins, O.; Pang, X.; Gan, L.; Schatz, R.; Tang, M.; Fu, S.; Liu, D. Toward terabit digital radio over fiber systems: Architecture and key technologies. IEEE Commun. Mag. 2019, 57, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Han, Y.; Tong, Y.; Yan, Z.; Wang, Y.; Zhang, Z.; Tsang, H.K.; Lau, K.M. High-performance III-V photodetectors on a monolithic InP/SOI platform. Optica 2021, 8, 1204–1209. [Google Scholar] [CrossRef]
- Lischke, S.; Peczek, A.; Morgan, J.; Sun, K.; Steckler, D.; Yamamoto, Y.; Korndörfer, F.; Mai, C.; Marschmeyer, S.; Fraschke, M. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics 2021, 15, 925–931. [Google Scholar] [CrossRef]
- Rouvalis, E.; Chtioui, M.; van Dijk, F.; Lelarge, F.; Fice, M.J.; Renaud, C.C.; Carpintero, G.; Seeds, A.J. 170 GHz uni-traveling carrier photodiodes for InP-based photonic integrated circuits. Opt. Express 2012, 20, 20090–20095. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Low, T.; Xia, F.; Avouris, P. Photoconductivity of biased graphene. Nat. Photonics 2013, 7, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.; Vitiello, M.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, Z.; Zhu, X.; Yvind, K.; Dong, J.; Galili, M.; Hu, H.; Mortensen, N.A.; Xiao, S.; Oxenløwe, L.K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 2020, 9, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, J.; Liu, C.; Yin, Y.; Wang, W.; Ni, Z.; Fu, Z.; Yu, H.; Xu, Y.; Shi, Y. High-performance silicon– graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl. 2020, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Kikunaga, K.; Wang, H.; Sun, S.; Amin, R.; Maiti, R.; Tahersima, M.H.; Dalir, H.; Miscuglio, M.; Sorger, V.J. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 2020, 7, 932–940. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Z.; Chen, Z.; Wan, X.; Zhu, B.; Tsang, H.K.; Shu, C.; Xu, J. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 2016, 8, 13206–13211. [Google Scholar] [CrossRef]
- Schuler, S.; Muench, J.E.; Ruocco, A.; Balci, O.; Thourhout, D.v.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zuo, Y.; Xiao, S.; Oxenløwe, L.K.; Ding, Y. Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth. Opto-Electron. Adv. 2022, 5, 210159. [Google Scholar] [CrossRef]
- Sato, K.; Saito, R.; Cong, C.; Yu, T.; Dresselhaus, M.S. Zone folding effect in Raman G-band intensity of twisted bilayer graphene. Phys. Rev. B 2012, 86, 125414. [Google Scholar] [CrossRef] [Green Version]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning superconductivity in twisted bilayer graphene. Science 2019, 363, 1059–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerelsky, A.; McGilly, L.J.; Kennes, D.M.; Xian, L.; Yankowitz, M.; Chen, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Van Luan, N.; Kim, T.; Jeon, J.; Kim, J.; Moon, P.; Lee, Y.H.; Choi, E. Gate tunable optical absorption and band structure of twisted bilayer graphene. Phys. Rev. B 2019, 99, 241405. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Wang, H.; Peng, H.; Tan, Z.; Liao, L.; Lin, L.; Sun, X.; Koh, A.L.; Chen, Y.; Peng, H. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 2016, 7, 10699. [Google Scholar] [CrossRef] [Green Version]
- Deng, B.; Ma, C.; Wang, Q.; Yuan, S.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics 2020, 14, 549–553. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Wang, Y.; Zhao, L.; Li, Y.; Chen, B.; Huang, S.; Zhang, S.; Wang, W.; Pei, D. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 2021, 12, 2391. [Google Scholar] [CrossRef]
- Dos Santos, J.L.; Peres, N.; Neto, A.C. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802. [Google Scholar]
- Ha, S.; Park, N.H.; Kim, H.; Shin, J.; Choi, J.; Park, S.; Moon, J.-Y.; Chae, K.; Jung, J.; Lee, J.-H.; et al. Enhanced third-harmonic generation by manipulating the twist angle of bilayer graphene. Light Sci. Appl. 2021, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yuan, S.; Cheung, P.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 2022, 604, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Huang, L.; Kim, C.-J.; Park, J.; Graham, M.W. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 2019, 10, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, P.; Tiwari, P.; Mauthe, S.; Schmid, H.; Sousa, M.; Scherrer, M.; Baumann, M.; Bitachon, B.I.; Leuthold, J.; Gotsmann, B.; et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat. Commun. 2022, 13, 909. [Google Scholar] [CrossRef]
- Lee, S.; Cheng, C.W.; Sun, X.; Emic, C.D.; Miyazoe, H.; Frank, M.M.; Lofaro, M.; Bruley, J.; Hashemi, P.; Ott, J.A.; et al. High Performance InGaAs Gate-All-Around Nanosheet FET on Si Using Template Assisted Selective Epitaxy. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 39.35.31–39.35.34. [Google Scholar]
- Huang, M.; Bakharev, P.V.; Wang, Z.-J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H.J.; Li, Y.; Qu, D. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni (111) foil. Nat. Nanotechnol. 2020, 15, 289–295. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Qiao, R.; Wang, Q.; Zhang, Z.; Liu, F.; Zhou, Z.; Shang, N.; Fang, H.; Wang, M. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 2022, 21, 1263–1268. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Zhang, Z.; Wang, W.; Zhou, Z.; Peng, W.; Zeng, Y.; Yuan, Y.; Huang, S.; Peng, X.; Zhu, X.; et al. Photodetector Based on Twisted Bilayer Graphene/Silicon Hybrid Slot Waveguide with High Responsivity and Large Bandwidth. Photonics 2022, 9, 867. https://doi.org/10.3390/photonics9110867
Yan S, Zhang Z, Wang W, Zhou Z, Peng W, Zeng Y, Yuan Y, Huang S, Peng X, Zhu X, et al. Photodetector Based on Twisted Bilayer Graphene/Silicon Hybrid Slot Waveguide with High Responsivity and Large Bandwidth. Photonics. 2022; 9(11):867. https://doi.org/10.3390/photonics9110867
Chicago/Turabian StyleYan, Siqi, Ze Zhang, Weiqin Wang, Ziwen Zhou, Wenyi Peng, Yifan Zeng, Yuqin Yuan, Siting Huang, Xuchen Peng, Xiaolong Zhu, and et al. 2022. "Photodetector Based on Twisted Bilayer Graphene/Silicon Hybrid Slot Waveguide with High Responsivity and Large Bandwidth" Photonics 9, no. 11: 867. https://doi.org/10.3390/photonics9110867
APA StyleYan, S., Zhang, Z., Wang, W., Zhou, Z., Peng, W., Zeng, Y., Yuan, Y., Huang, S., Peng, X., Zhu, X., Tang, M., & Ding, Y. (2022). Photodetector Based on Twisted Bilayer Graphene/Silicon Hybrid Slot Waveguide with High Responsivity and Large Bandwidth. Photonics, 9(11), 867. https://doi.org/10.3390/photonics9110867