Utilizing Dynamic Scattering for Learning Radar Cross-Section of a Flapping-Wing Aircraft
Abstract
:1. Introduction
2. Flapping-Wing Scattering Method
2.1. Flapping-Wing Motion
2.2. Dynamic Electromagnetic Scattering
2.3. Method Validation
3. Model of the Flapping-Wing Aircraft
4. Results and Discussion
4.1. Influence of Frequency
4.2. Forward RCS Analysis
4.3. Side RCS Analysis
4.4. Tail RCS Analysis
5. Conclusions
- (1)
- In the given gliding mode, the peak of the RCS curve of the aircraft increases with the increase of the radar wave frequency while the fuselage provides more contribution to lateral RCS peak. In the given flapping mode, the frequency mainly affects the local fluctuation of the aircraft dynamic RCS curve.
- (2)
- For the given forward azimuth range in flapping mode, increasing the azimuth can reduce the mean and peak levels of the aircraft dynamic RCS curve, while increasing the elevation angle will increase the peak and mean levels of the aircraft dynamic RCS curve.
- (3)
- In the flapping mode, the mean of the dynamic RCS curve of the aircraft in the lateral backward azimuth is significantly lower than that in the lateral forward azimuth. For the given tail azimuth range, the increase of azimuth will increase the mean and peak of aircraft dynamic RCS curve.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Wing Shape and Multiple Scattering
References
- Shen, H.; Yu, Y. Development and key technologies of morphological bionic aircraft. Adv. Aeronaut. Sci. Eng. 2021, 12, 9–19. [Google Scholar]
- Bian, Z.; Li, J.; Guo, L.; Luo, X. Analyzing the Electromagnetic Scattering Characteristics of a Hypersonic Vehicle Based on the Inhomogeneity Zonal Medium Model. IEEE Trans. Antennas Propag. 2021, 69, 971–988. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z. Study on the aerodynamic forces of flapping wing MAV eith PVDF sensor. Piezoelectrics Acoustooptics 2012, 34, 712–715. [Google Scholar]
- Bluman, J.E.; Pohly, J.A.; Sridhar, M.K.; Kang, C.K.; Landrum, D.B.; Fahimi, F.; Aono, H. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling. Bioinspiration Biomim. 2018, 13, 046010. [Google Scholar] [CrossRef]
- Ang, H.; Zeng, R.; Duan, W.; Shi, Z. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV. J. Aerosp. Power 2007, 22, 1837–1844. [Google Scholar]
- Jiao, Z.; Wang, L.; Zhao, L.; Jiang, W. Hover flight control of X-shaped flapping wing aircraft considering wing–tail interactions. Aerosp. Sci. Technol. 2021, 116, 106870. [Google Scholar] [CrossRef]
- Cui, X.; Wei, R.; Zhou, X.; Shao, M.; Huang, J. Aerodynamic computation of flapping-wing simulation bird wings. J. Syst. Simul. 2009, 21, 4995–4998. [Google Scholar]
- Gueddida, A.; Djafari Rouhani, B.; Pennec, Y.; Di Donato, A.; Pierantoni, L.; Korovin, A.; Mencarelli, D. Coupling of Integrated Waveguide and Optomechanic Cavity for Microwave Phonon Excitation in Si Nanobeams. Photonics 2020, 7, 67. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Song, B.; Zhang, W. Research on wing structure deformation for aerodynamic force and inertial force of flapping-wing. J. Aerosp. Power 2010, 25, 1561–1566. [Google Scholar]
- Abbasi, S.H.; Mahmood, A.; Khaliq, A. Bioinspired Feathered Flapping Wing UAV Design for Operation in Gusty Environment. J. Robot. 2021, 2021, 8923599. [Google Scholar] [CrossRef]
- Bao, F.; Yang, Q.; He, Y. Experimental investigation on shedding vortex and lift mechanism of flapping wing model single degree of freedom. J. Aerosp. Power 2014, 29, 1092–1099. [Google Scholar]
- Zhou, Z.; Huang, J. Dynamic Scattering Approach for Solving the Radar Cross-Section of the Warship under Complex Motion Conditions. Photonics 2020, 7, 64. [Google Scholar] [CrossRef]
- Ye, S.; Xiong, J. Dynamic RCS behavior of helicopter rotating blades. Acta Aeronaut. Astronaut. Sin. 2006, 27, 816–822. [Google Scholar]
- Wong, S.K.; Riseborough, E.; Duff, G.; Chan, K.K. Radar cross-section measurements of a full-scale aircraft duct/engine structure. IEEE Trans. Antennas Propag. 2006, 54, 2436–2441. [Google Scholar] [CrossRef]
- Jiang, Z.H. Research on Radar Target Characteristics of Unmanned Helicopter. J. Astronaut. Metrol. Meas. 2015, 35, 61–66. [Google Scholar]
- Rajesh, N.; Malathi, K.; Raju, S.; Kumar, V.A.; Prasath, S.D.R.; Alsath, M.G.N. Design of Vivaldi antenna with wideband radar cross section reduction. IEEE Trans. Antennas Propag. 2017, 65, 2102–2105. [Google Scholar] [CrossRef]
- Xiao, T.; Luo, D.; Zheng, X.; Ang, H.; Ji, A. Progress and chanllenges in unsteady aerodynamic optimization design of bionic flapping-wings. Acta Aerodyn. Sin. 2018, 36, 80–87. [Google Scholar]
- Vasanelli, C.; Bögelsack, F.; Waldschmidt, C. Reducing the radar cross section of microstrip arrays using AMC structures for the vehicle integration of automotive radars. IEEE Trans. Antennas Propag. 2018, 66, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lu, G. Simulation research on aerodynamic performance of counterbeat four-wing flapping wing aircraft. Flight Dyn. 2019, 37, 25–29. [Google Scholar]
- Ozgun, O.; Kuzuoglu, M. A domain decomposition finite-element method for modeling electromagnetic scattering from rough sea surfaces with emphasis on near-forward scattering. IEEE Trans. Antennas Propag. 2018, 67, 335–345. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, X. Simulation Study on Aerodynamic Characteristics of Flapping-wing Aircraft with Multi-stage Wing and Multiple Degree of Freedom. J. Syst. Simul. 2019, 31, 2019. [Google Scholar]
- Deck-Léger, Z.-L.; Zheng, X.; Caloz, C. Electromagnetic Wave Scattering from a Moving Medium with Stationary Interface across the Interluminal Regime. Photonics 2021, 8, 202. [Google Scholar] [CrossRef]
- Guo, J.; Yin, H.C.; Ye, S.J.; Man, L.; Jia, Q. Novel technology for electromagnetic characteristic simulation of helicopter blades. Acta Aeronaut. Et Astronaut. Sin. 2019, 40, 322732. [Google Scholar]
- Wang, C.; Li, Y.; Feng, M.; Wang, J.; Ma, H.; Zhang, J.; Qu, S. Frequency-selective structure with transmission and scattering deflection based on spoof surface plasmon polariton modes. IEEE Trans. Antennas Propag. 2019, 67, 6508–6514. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J. Study of RCS characteristics of tilt-rotor aircraft based on dynamic calculation approach. Chin. J. Aeronaut. 2022, 35, 426–437. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S. Design of the aircraft model for bionic dragonflies’flapping wings and analysis on the aerodynamic characteristics. J. Mach. Des. 2021, 38, 10, 79–87. [Google Scholar]
- Wang, X.Y.; Dallmann, T.; Moch, R.; Heberling, D. ISAR tomography for full-polarimetric 3-D radar cross-section measurements. IEEE Trans. Antennas Propag. 2019, 67, 2853–2858. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J.; Wang, J. Compound helicopter multi-rotor dynamic radar cross section response analysis. Aerosp. Sci. Technol. 2020, 105, 106047. [Google Scholar] [CrossRef]
- Peng, C.; Sun, L.; Wang, Y.; Tan, W.; Xiao, F. Control oriented longitudinal modeling and analysis of pigeon-like flapping-wing aircraft. J. Beijing Univ. Aeronaut. Astronaut. 2021. [CrossRef]
- Viet, H.; Lee, C.; Lee, J. Two-dimensional efficient broadband retrodirective metasurface. IEEE Trans. Antennas Propag. 2019, 68, 2451–2456. [Google Scholar]
- Elbaz, A.; He, Z.; Gao, B.; Chi, J.; Su, E.; Zhang, D.; Liu, S.; Xu, H.; Liu, H.; Gu, Z. Design of a two-stage flapping wing bionic aircraft. Electromechanical Eng. Technol. 2021, 50, 9–12. [Google Scholar]
- Zhou, Z.; Huang, J.; Chen, C.; Zhang, J. Keen Investigation of the Electromagnetic Scattering Characteristics of Tiltrotor Aircraft Based on Dynamic Calculation Method. Photonics 2021, 8, 175. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Yan, X.; Wang, F.; Cheng, T. Design of a Surface Plasmon Resonance Temperature Sensor with Multi-Wavebands Based on Conjoined-Tubular Anti-Resonance Fiber. Photonics 2021, 8, 231. [Google Scholar] [CrossRef]
Parameter | Lb (m) | Lt (m) | Lh (m) | Hb (m) |
Value | 3.657 | 0.787 | 0.47 | 0.6 |
Parameter | Wb (m) | Wt (m) | Wtn (m) | Airfoil 1 |
Value | 0.58 | 0.897 | 0.29 | Uplink DLG |
Parameter | Lw1 (m) | Cw1 (m) | Yw1r (m) | Xw1e (m) |
Value | 2.04 | 0.76 | 0.32 | 0.29 |
Parameter | Cu1 (m) | Cu2 (m) | Yu0 (m) | Yu1 (m) |
Value | 0.698 | 0.049 | 2 | 2.15 |
Region | Max Size (mm) | Region | Max Size (mm) |
---|---|---|---|
Global minimum size | 1 | Trailing edge of wing | 2 |
Leading edge of wing | 3 | Wing tip airfoil | 2 |
Wing tip edge | 3 | Tail edge | 5 |
Head edge | 10 | Wing tip surface | 15 |
Wing | 25 | Aircraft body | 55 |
frh (GHz) | 3 | 5 | 7 | 9 | 11 | 13 |
---|---|---|---|---|---|---|
Mean | −19.3432 | −18.5952 | −21.8308 | −21.3989 | −22.7407 | −22.3742 |
Peak | −14.6152 | −14.2637 | −16.9687 | −17.6932 | −16.9422 | −14.732 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Huang, J. Utilizing Dynamic Scattering for Learning Radar Cross-Section of a Flapping-Wing Aircraft. Photonics 2022, 9, 877. https://doi.org/10.3390/photonics9110877
Zhou Z, Huang J. Utilizing Dynamic Scattering for Learning Radar Cross-Section of a Flapping-Wing Aircraft. Photonics. 2022; 9(11):877. https://doi.org/10.3390/photonics9110877
Chicago/Turabian StyleZhou, Zeyang, and Jun Huang. 2022. "Utilizing Dynamic Scattering for Learning Radar Cross-Section of a Flapping-Wing Aircraft" Photonics 9, no. 11: 877. https://doi.org/10.3390/photonics9110877
APA StyleZhou, Z., & Huang, J. (2022). Utilizing Dynamic Scattering for Learning Radar Cross-Section of a Flapping-Wing Aircraft. Photonics, 9(11), 877. https://doi.org/10.3390/photonics9110877