Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning
Abstract
:1. Introduction
2. Interferometric Signal Processing
2.1. Intermode Interferometer Signal Model
2.2. Multicomponent Signal Processing Using MUSIC Algorithm
2.3. Optimization of Neural Network Structure
2.4. Signal Demodulation Using MUSIC Algorithm
3. Application of the ML-Aided MUSIC Demodulation Approach to Experimental Signal Processing
3.1. Experimental Measurement of Strain and Curvature Using SMS-Based Sensor
3.2. Signal Processing of a SMS-Based Pulse-Wave Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pevec, S.; Donlagić, D. Multiparameter fiber-optic sensors: A review. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Ba, D.; Liu, L.; Qiu, L.; Yang, S.; Dong, Y. Multiplexing of Fabry-Pérot Sensor by Frequency Modulated Continuous Wave Interferometry for Quais-Distributed Sensing Application. J. Light. Technol. 2021, 39, 4529–4534. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017; p. 472. [Google Scholar] [CrossRef]
- Lellouch, A.; Biondi, B.L. Seismic Applications of Downhole DAS. Sensors 2021, 21, 2897. [Google Scholar] [CrossRef] [PubMed]
- Gauglitz, G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal. Bioanal. Chem. 2020, 412, 3317–3349. [Google Scholar] [CrossRef] [Green Version]
- Kotov, O.I.; Bisyarin, M.A.; Chapalo, I.E.; Petrov, A.V. Simulation of a multimode fiber interferometer using averaged characteristics approach. J. Opt. Soc. Am. B 2018, 35, 1990–1999. [Google Scholar] [CrossRef]
- Donlagić, D.; Završnik, M. Fiber-optic microbend sensor structure. Opt. Lett. 1997, 22, 837–839. [Google Scholar] [CrossRef]
- Kumar, A.; Varshney, R.; Antony, S.; Sharma, P. Transmission characteristics of SMS fiber optic sensor structures. Opt. Commun. 2003, 219, 215–219. [Google Scholar] [CrossRef]
- Ribeiro, R.M.; Werneck, M.M. An intrinsic graded-index multimode optical fibre strain-gauge. Sensors Actuators A Phys. 2004, 111, 210–215. [Google Scholar] [CrossRef]
- Li, C.; Chen, S.; Zhu, Y. Maximum Likelihood Estimation of Optical Path Length in Spectral Interferometry. J. Light. Technol. 2017, 35, 4880–4887. [Google Scholar] [CrossRef]
- Ushakov, N.A.; Liokumovich, L.B. Resolution limits of extrinsic Fabry–Perot interferometric displacement sensors utilizing wavelength scanning interrogation. Appl. Opt. 2014, 53, 5092–5099. [Google Scholar] [CrossRef]
- Ushakov, N.A.; Liokumovich, L.B. Multiplexed Extrinsic Fiber Fabry-Perot Interferometric Sensors: Resolution Limits. J. Light. Technol. 2015, 33, 1683–1690. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Semenova, Y.; Wang, P.; Hatta, A.M.; Farrell, G. Simultaneous measurement of displacement and temperature with a single SMS fiber structure. IEEE Photonics Technol. Lett. 2010, 23, 130–132. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Frazao, O.; Viegas, J.; Ferreira, L.A.; Araujo, F.M.; Malcata, F.X.; Santos, J. Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure. Meas. Sci. Technol. 2011, 22, 085201. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Su, J.; Dong, X.; Sun, T.; Grattan, K.T.V. Simultaneous Measurement of Strain and Temperature With a Few-Mode Fiber-Based Sensor. J. Light. Technol. 2018, 36, 2796–2802. [Google Scholar] [CrossRef]
- Petrov, A.V.; Chapalo, I.E.; Bisyarin, M.A.; Kotov, O.I. Intermodal fiber interferometer with frequency scanning laser for sensor application. Appl. Opt. 2020, 59, 10422. [Google Scholar] [CrossRef]
- Cardona-Maya, Y.; Del Villar, I.; Socorro, A.B.; Corres, J.M.; Matias, I.R.; Botero-Cadavid, J.F. Wavelength and Phase Detection Based SMS Fiber Sensors Optimized with Etching and Nanodeposition. J. Light. Technol. 2017, 35, 3743–3749. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, O.; Del Villar, I.; Vento, J.R.; Socorro, A.B.; Gallego, E.E.; Corres, J.M.; Matias, I.R. Increasing the Sensitivity of an Optic Level Sensor with a Wavelength and Phase Sensitive Single-Mode Multimode Single-Mode Fiber Structure. IEEE Sens. J. 2017, 17, 5515–5522. [Google Scholar] [CrossRef] [Green Version]
- Ahn, T.J.; Moon, S.; Kim, S.; Oh, K.; Kim, D.Y.; Kobelke, J.; Schuster, K.; Kirchhof, J. Frequency-domain intermodal interferometer for the bandwidth measurement of a multimode fiber. Appl. Opt. 2006, 45, 8238–8243. [Google Scholar] [CrossRef]
- Barrera, D.; Villatoro, J.; Finazzi, V.P.; Cárdenas-Sevilla, G.A.; Minkovich, V.P.; Sales, S.; Pruneri, V. Low-loss photonic crystal fiber interferometers for sensor networks. J. Light. Technol. 2010, 28, 3542–3547. [Google Scholar] [CrossRef]
- Leandro, D.; Bravo, M.; Ortigosa, A.; Lopez-Amo, M. Real-time FFT analysis for interferometric sensors multiplexing. J. Light. Technol. 2015, 33, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Harris, F.J. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Pisarenko, V.F. The Retrieval of Harmonics from a Covariance Function. Geophys. J. R. Astrophys. Soc. 1973, 33, 347–366. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Moses, R. Introduction to Spectral Analysis; Prentice Hall: Hoboken, NJ, USA, 1997; p. 319. [Google Scholar]
- Langoju, R.; Patil, A.; Rastogi, P. Super-resolution Fourier transform method in phase shifting interferometry. Opt. Express 2005, 13, 7160. [Google Scholar] [CrossRef]
- Barabell, A. Improving the resolution performance of eigenstructure-based direction-finding algorithms. In Proceedings of the ICASSP ’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, USA, 14–16 April 1983; Volume 8, pp. 336–339. [Google Scholar] [CrossRef]
- Rao, B.D.; Hari, K.V. Performance Analysis of Root-Music. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 1939–1949. [Google Scholar] [CrossRef]
- Wax, M.; Kallath, T.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.C.; Krishnaiah, P.R.; Bai, Z.D. On detection of the number of signals in presence of white noise. J. Multivar. Anal. 1986, 20, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Selen, Y. Model-order selection. IEEE Signal Process. Mag. 2004, 21, 36–47. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast White Light Interferometry Demodulation Algorithm for Low-Finesse Fabry-Pérot Sensors. IEEE Photonics Technol. Lett. 2015, 27, 817–820. [Google Scholar] [CrossRef]
- Ushakov, N.A.; Liokumovich, L.B. Abrupt λ/2 demodulation errors in spectral interferometry: Origins and suppression. IEEE Photonics Technol. Lett. 2020, 32, 1159–1162. [Google Scholar] [CrossRef]
- Ma, C.; Lally, E.M.; Wang, A. Toward Eliminating Signal Demodulation Jumps in Optical Fiber Intrinsic Fabry–Perot Interferometric Sensors. J. Light. Technol. 2011, 29, 1913–1919. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Kumar, A.; Varshney, R.K.; Kumar, Y.P.; Marin, E.; Meunier, J.P. Strain and Temperature Sensing Characteristics of Single-Mode Multimode Single-Mode Structures. J. Light. Technol. 2009, 27, 2348–2356. [Google Scholar] [CrossRef]
- Wu, Q.; Qu, Y.; Liu, J.; Yuan, J.; Wan, S.P.; Wu, T.; He, X.D.; Liub, B.; Liuc, D.; Ma, Y.; et al. Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sens. J. 2021, 21, 12734–12751. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Kohler, M.H.; Kienle, P.; Bian, Q.; Jakobi, M.; Koch, A.W. Advances in Optical Fiber Sensors Based on Multimode Interference (MMI): A Review. IEEE Sens. J. 2021, 21, 132–142. [Google Scholar] [CrossRef]
- Ushakov, N.A.; Liokumovich, L.B. Signal Processing Approach for Spectral Interferometry Immune to λ/2 Errors. IEEE Photonics Technol. Lett. 2019, 31, 1483–1486. [Google Scholar] [CrossRef]
- Thakoor, K.A.; Koorathota, S.C.; Hood, D.C.; Sajda, P. Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images. IEEE Trans. Biomed. Eng. 2020, 68, 2456–2466. [Google Scholar] [CrossRef]
- Cuevas, A.R.; Fontana, M.; Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J.M. Machine Learning for Turning Optical Fiber Specklegram Sensor into a Spatially-Resolved Sensing System. Proof of Concept. J. Light. Technol. 2018, 36, 3733–3738. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xia, L.; Wu, N.; Wang, Z.; Zuo, G. Optimized Feedforward Neural Network for Multiplexed Extrinsic Fabry-Perot Sensors Demodulation. J. Light. Technol. 2021, 39, 4564–4569. [Google Scholar] [CrossRef]
- Barino, F.O.; Santos, A.B.D. LPG Interrogator Based on FBG Array and Artificial Neural Network. IEEE Sens. J. 2020, 20, 14187–14194. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Diddams, S.; Diels, J.C. Dispersion measurements with white-light interferometry. J. Opt. Soc. Am. B 1996, 13, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Boyd, R.W.; Gauthier, D.J.; Dudley, C.C. Enhancing the spectral sensitivity of interferometers using slow-light media. Opt. Lett. 2007, 32, 915–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Cheng, F.; Pham, M.; Rein, H.; Patel, D.; Fang, Y.; Feng, Y.; Yan, J.; Song, X.; Yan, H.; et al. A Noninvasive, Economical, and Instant-Result Method to Diagnose and Monitor Type 2 Diabetes Using Pulse Wave: Case-Control Study. JMIR mHealth uHealth 2019, 7, e11959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, R.R. Arterial Stiffness: Recommendations and Standardization. Pulse 2016, 4, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Lo Presti, D.; Romano, C.; Massaroni, C.; D’Abbraccio, J.; Massari, L.; Caponero, M.A.; Oddo, C.M.; Formica, D.; Schena, E. Cardio-Respiratory Monitoring in Archery Using a Smart Textile Based on Flexible Fiber Bragg Grating Sensors. Sensors 2019, 19, 3581. [Google Scholar] [CrossRef] [Green Version]
- Ushakov, N.A.; Markvart, A.A.; Kulik, D.D.; Liokumovich, L.B. Comparison of Pulse Wave Signal Monitoring Techniques with Different Fiber-Optic Interferometric Sensing Elements. Photonics 2021, 8, 142. [Google Scholar] [CrossRef]
- Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Clifton, D.A.; Beale, R.; Watkinson, P.J. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol. Meas. 2016, 37, 610–626. [Google Scholar] [CrossRef]
- Ushakov, N.A.; Markvart, A.A.; Liokumovich, L.B. Pulse Wave Velocity Measurement with Multiplexed Fiber Optic Fabry-Perot Interferometric Sensors. IEEE Sens. J. 2020, 20, 11302–11312. [Google Scholar] [CrossRef]
10 | 20 | 50 | 100 | 200 | |
---|---|---|---|---|---|
10 | 0.66056 | 0.66122 | 0.65592 | 0.64462 | 0.62242 |
20 | 0.72226 | 0.72302 | 0.71278 | 0.70728 | 0.67426 |
50 | 0.7622 | 0.77714 | 0.77396 | 0.7468 | 0.7586 |
100 | 0.77166 | 0.77106 | 0.76774 | 0.7597 | 0.77108 |
200 | 0.7811 | 0.77122 | 0.77998 | 0.76176 | 0.77002 |
500 | 0.78042 | 0.77658 | 0.7787 | 0.77078 | 0.76868 |
10 | 20 | 50 | 100 | 200 | |
---|---|---|---|---|---|
10 | 0.73861 | 0.74021 | 0.75137 | 0.76056 | 0.78277 |
20 | 0.66295 | 0.68782 | 0.67841 | 0.69287 | 0.74647 |
50 | 0.61353 | 0.61228 | 0.61256 | 0.64156 | 0.64039 |
100 | 0.61283 | 0.62669 | 0.62815 | 0.61956 | 0.62739 |
200 | 0.60054 | 0.61849 | 0.60925 | 0.61417 | 0.61626 |
500 | 0.59843 | 0.60879 | 0.59085 | 0.61704 | 0.61519 |
Component OPD, m | 100 | 200 | 370 | 900 | 1000 | 1100 | 1600 | 1800 |
0.995 | 0.979 | 0.98 | 0.971 | 0.968 | 0.988 | 0.993 | 0.968 | |
, rad/m | 4.1 | 5.4 | 1.5 | 0.32 | 0.26 | 6.8 | 1.2 | 8.1 |
, rad/m | –2.3 | 3 | 1.7 | 4.3 | 7.4 | 6.9 | 5.1 | 8.2 |
0.974 | 0.986 | 0.927 | 0.924 | 0.974 | 0.997 | 0.994 | 0.995 | |
, rad/m | 5.5 | 6 | 9.3 | 0.9 | –6.7 | 6.4 | 0.29 | 6.5 |
, rad/m | –4.7 | 2.7 | 13.1 | 3.8 | 9.4 | 8.1 | 8 | 10.5 |
0.969 | 0.982 | 0.927 | 0.924 | – | 0.997 | – | – | |
, rad/m | 5.4 | 5.7 | 9.3 | 0.9 | – | 6.4 | – | – |
, rad/m | –4.5 | 2.2 | 13.1 | 3.8 | – | 8.1 | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushakov, N.; Markvart, A.; Liokumovich, L. Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning. Photonics 2022, 9, 879. https://doi.org/10.3390/photonics9110879
Ushakov N, Markvart A, Liokumovich L. Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning. Photonics. 2022; 9(11):879. https://doi.org/10.3390/photonics9110879
Chicago/Turabian StyleUshakov, Nikolai, Aleksandr Markvart, and Leonid Liokumovich. 2022. "Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning" Photonics 9, no. 11: 879. https://doi.org/10.3390/photonics9110879
APA StyleUshakov, N., Markvart, A., & Liokumovich, L. (2022). Singlemode-Multimode-Singlemode Fiber-Optic Interferometer Signal Demodulation Using MUSIC Algorithm and Machine Learning. Photonics, 9(11), 879. https://doi.org/10.3390/photonics9110879