Noise Measurements and Noise Statistical Properties Investigations in a Stimulated Raman Scattering Microscope Based on Three Femtoseconds Laser Sources
Abstract
:1. Introduction
2. Experimental Setup and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sirleto, L.; Ferrara, M.A.; Nikitin, T.; Novikov, S.; Khriachtchev, L. Giant Raman gain in silicon nanocrystals. Nat. Commun. 2012, 3, 1220. [Google Scholar] [CrossRef] [Green Version]
- Sirleto, L.; Vergara, A.; Ferrara, M.A. Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 2017, 9, 169–217. [Google Scholar] [CrossRef]
- Sirleto, L.; Aronne, A.; Gioffrè, M.; Fanelli, E.; Righini, G.C.; Pernice, P.; Vergara, A. Compositional and thermal treatment effects on Raman gain and bandwidth in nanostructured silica-based glasses. Opt. Mater. 2013, 36, 408–413. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Sirleto, L. Integrated Raman Laser: A Review of the Last Two Decades. Micromachines 2020, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Sirleto, L.; Ferrara, M.A. Fiber Amplifiers and Fiber Lasers Based on Stimulated Raman Scattering: A Review. Micromachines 2020, 11, 247. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350, aaa8870. [Google Scholar] [CrossRef]
- Camp, C.H., Jr.; Cicerone, M.T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photon. 2015, 9, 295–305. [Google Scholar] [CrossRef]
- Zumbusch, A.; Langbein, W.; Borri, P. Nonlinear vibrational microscopy applied to lipid biology. Prog. Lipid Res. 2013, 52, 615–632. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, P.; Slipchenko, M.N.; Cheng, J.-X. Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy. Acc. Chem. Res. 2014, 47, 2282–2290. [Google Scholar] [CrossRef] [Green Version]
- Alfonso-García, A.; Mittal, R.; Lee, E.S.; Potma, E.O. Biological imaging with coherent Raman scattering microscopy: A tutorial. J. Biomed. Opt. 2014, 19, 071407. [Google Scholar] [CrossRef]
- Cheng, Q.; Miao, Y.; Wild, J.; Min, W.; Yang, Y. Emerging applications of stimulated Raman scattering microscopy in materials science. Matter 2021, 4, 1460–1483. [Google Scholar] [CrossRef]
- Wei, L.; Hu, F.; Chen, Z.; Shen, Y.; Zhang, L.; Min, W. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes. Acc. Chem. Res. 2016, 49, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Lamprecht, M.R.; Wei, L.; Morrison, B.; Min, W. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Sci. Rep. 2016, 6, 39660. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Hu, F.; Shen, Y.; Chen, Z.; Yu, Y.; Lin, C.C.; Wang, M.C.; Min, W. Live-cell imaging of alkynetagged small biomolecules by stimulated Raman scattering. Nat. Methods 2014, 11, 410–412. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Shen, Y.; Xu, F.; Hu, F.; Harrington, J.K.; Targoff, K.L.; Min, W. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 2015, 10, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Slipchenko, N.; Cheng, J.X. Highly sensitive vibrational imaging by femtosecond pulse stimulated raman loss. J. Phys. Chem. Lett. 2011, 2, 1248–1253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, J.; Lan, L.; Cheng, J.X. Quantification of lipid metabolism in living cells through the dynamics of lipid Droplets measured by stimulated Raman Scattering Imaging. Anal. Chem. 2017, 89, 4502–4507. [Google Scholar] [CrossRef]
- Dou, W.; Zhang, D.; Jung, Y.; Cheng, J.-X.; Umulis, D.M. Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. Biophys. J. 2012, 102, 1666–1675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Huang, K.-C.; Rajwa, B.; Li, J.; Yang, S.; Lin, H.; Liao, C.-s.; Eakins, G.; Kuang, S.; Patsekin, V.; et al. Stimulated Raman scattering flow cytometry for label-free single-particle analysis. Optica 2017, 4, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cheng, J.-X. Direct visualization of De novo Lipogenesis in single living cells. Sci. Rep. 2015, 4, 6807. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zheng, C.; Shen, Y.; Chen, Z.; Silveira, E.S.; Zhang, L.; Wei, M.; Liu, C.; de Sena-Tomas, C.; Targoff, K.; et al. Optical imaging of metabolic dynamics in animals. Nat. Commun. 2018, 9, 2995. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Chen, Z.; Zhang, L.; Shen, Y.; Wei, L.; Min, W. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. Int. Ed. 2015, 54, 9821–9825. [Google Scholar] [CrossRef] [Green Version]
- Long, R.; Zhang, L.; Shi, L.; Shen, Y.; Hu, F.; Zeng, C.; Min, W. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering. Chem. Commun. 2018, 54, 152–155. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, L.; Shen, Y.; Miao, Y.; Wei, M.; Qian, N.; Liu, Y.; Min, W. Spectral tracing of deuterium for imaging glucose metabolism. Nat. Biomed. Eng. 2019, 3, 402–413. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, Z.; Zhang, L.; Shi, L.; Shahriar, S.; Chan, R.B.; Di Paolo, G.; Min, W. Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2017, 114, 13394–13399. [Google Scholar] [CrossRef] [Green Version]
- Ozeki, Y.; Dake, F.; Kajiyama, S.; Fukui, K.; Itoh, K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 2009, 17, 3651–3658. [Google Scholar] [CrossRef]
- Ozeki, Y.; Kitagawa, Y.; Sumimura, K.; Nishizawa, N.; Umemura, W.; Kajiyama, S.S.; Fukui, K.; Itoh, K. Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses. Opt. Express 2010, 18, 13708–13719. [Google Scholar] [CrossRef]
- Audier, X.; Heuke, S.; Volz, P.; Rimke, I.; Rigneault, H. Noise in stimulated Raman scattering measurement: From basics to practice. Apl Photonics 2020, 5, 011101. [Google Scholar] [CrossRef] [Green Version]
- Moester, M.J.B.; Ariese, F.; De Boer, J.F. Optimized signal-to-noise ratio with shot noise limited detection in Stimulated Raman Scattering microscopy. J. Eur. Opt. Soc. Rapid Publ. 2015, 10, 15022. [Google Scholar] [CrossRef] [Green Version]
- Nose, K.; Ozeki, Y.; Kishi, T.; Sumimura, K.; Nishizawa, N.; Fukui, K.; Kanematsu, Y.; Itoh, K. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt. Express 2012, 20, 13958–13965. [Google Scholar] [CrossRef]
- Zada, L.; Fokker, B.; Leslie, H.A.; Vethaak, A.D.; de Boer, J.F.; Ariese, F. Stimulated Raman scattering simulation for imaging optimization. J. Eur. Opt. Soc. Rapid Publ. 2021, 17, 10. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, D.; Cheng, J.-X. Coherent Raman Scattering Microscopy in Biology and Medicine. Annu. Rev. Biomed. Eng. 2015, 17, 415–445. [Google Scholar] [CrossRef] [Green Version]
- Crisafi, F.; Kumar, V.; Scopigno, T.; Marangoni, M.; Cerullo, G.; Polli, D. In-line balanced detection stimulated Raman scattering microscopy. Sci. Rep. 2017, 7, 10745. [Google Scholar] [CrossRef]
- Ranjan, R.; Ferrara, M.A.; Filograna, A.; Valente, C.; Sirleto, L. Femtosecond Stimulated Raman Microscopy: Home-built realization and a case study of Biological imaging. J. Instrum. 2019, 14, P09008. [Google Scholar] [CrossRef]
- Ranjan, R.; Indolfi, M.; Ferrara, M.A.; Sirleto, L. Implementation of a Nonlinear Microscope Based on Stimulated Raman Scattering. J. Vis. Exp. 2019, 149, e59614. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.A.; Filograna, A.; Ranjan, R.; Corda, D.; Valente, C.; Sirleto, L. Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy. PLoS ONE 2019, 14, e0216811. [Google Scholar] [CrossRef] [Green Version]
- D’Arco, A.; Ferrara, M.A.; Indolfi, M.; Tufano, V.; Sirleto, L. Label-free imaging of small lipid droplets by femtosecond-stimulated Raman scattering microscopy. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750052. [Google Scholar] [CrossRef]
- D’Arco, A.; Brancati, N.; Ferrara, M.A.; Indolfi, M.; Frucci, M.; Sirleto, L. Subcellular chemical and morphological analysis by stimulated Raman scattering microscopy and image analysis techniques. Biomed. Opt. Express 2016, 7, 1853–1864. [Google Scholar] [CrossRef] [Green Version]
- Sirleto, L.; Ranjan, R.; Ferrara, M.A. Analysis of Pulses Bandwidth and Spectral Resolution in Femtosecond Stimulated Raman Scattering Microscopy. Appl. Sci. 2021, 11, 3903. [Google Scholar] [CrossRef]
- Ranjan, R.; Costa, G.; Ferrara, M.A.; Sansone, M.; Sirleto, L. Noises investigations and image denoising in femtosecond stimulated Raman scattering microscopy. J. Biophotonics 2022, 15, e202100379. [Google Scholar] [CrossRef]
- Ranjan, R.; D’Arco, A.; Ferrara, M.A.; Indolfi, M.; Larobina, M.; Sirleto, L. Integration of stimulated Raman gain and stimulated Raman losses detection modes in a single nonlinear microscope. Opt. Express 2018, 26, 26317–26326. [Google Scholar] [CrossRef]
- Heuke, S.; Lombardini, A.; Büttner, E.; Rigneault, H. Simultaneous stimulated Raman gain and loss detection (SRGAL). Opt. Express 2020, 28, 29619–29630. [Google Scholar] [CrossRef]
- Berto, P.; Andresen, E.R.; Rigneault, H. Background-free stimulated Raman spectroscopy and microscopy. Phys. Rev. Lett. 2014, 112, 053905. [Google Scholar] [CrossRef]
- Svelto, O.; David, C. Hanna, Principles of Lasers; Springer: Berlin, Germany, 2010; eBook; ISBN 978-1-4419-1302-9. [Google Scholar]
- Chen, J.; Xia, W.; Wang, M. Characteristic measurement for femtosecond laser pulses using a GaAs PIN photodiode as a two-photon photovoltaic receiver. J. Appl. Phys. 2017, 121, 223103. [Google Scholar] [CrossRef]
- Diels, J.C.M.; Fontaine, J.J.; McMichael, I.C.; Simoni, F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 1985, 24, 1270–1282. [Google Scholar] [CrossRef]
- Ljung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
Laser | Wavelength Range | Pulse Durations | Repetition Rate |
---|---|---|---|
Ti:Sa | 740 nm–880 nm | 140 fs | 80 MHz |
OPO | 1000 nm–1600 nm | 200 fs | 80 MHz |
SHG | 500 nm–800 nm | 200 fs | 80 MHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjan, R.; Costa, G.; Ferrara, M.A.; Sansone, M.; Sirleto, L. Noise Measurements and Noise Statistical Properties Investigations in a Stimulated Raman Scattering Microscope Based on Three Femtoseconds Laser Sources. Photonics 2022, 9, 910. https://doi.org/10.3390/photonics9120910
Ranjan R, Costa G, Ferrara MA, Sansone M, Sirleto L. Noise Measurements and Noise Statistical Properties Investigations in a Stimulated Raman Scattering Microscope Based on Three Femtoseconds Laser Sources. Photonics. 2022; 9(12):910. https://doi.org/10.3390/photonics9120910
Chicago/Turabian StyleRanjan, Rajeev, Giovanni Costa, Maria Antonietta Ferrara, Mario Sansone, and Luigi Sirleto. 2022. "Noise Measurements and Noise Statistical Properties Investigations in a Stimulated Raman Scattering Microscope Based on Three Femtoseconds Laser Sources" Photonics 9, no. 12: 910. https://doi.org/10.3390/photonics9120910
APA StyleRanjan, R., Costa, G., Ferrara, M. A., Sansone, M., & Sirleto, L. (2022). Noise Measurements and Noise Statistical Properties Investigations in a Stimulated Raman Scattering Microscope Based on Three Femtoseconds Laser Sources. Photonics, 9(12), 910. https://doi.org/10.3390/photonics9120910