Susceptible Plasmonic Photonic Crystal Fiber Sensor with Elliptical Air Holes and External-Flat Gold-Coated Surface
Abstract
:1. Introduction
2. Numerical Modeling Method and Basic Formulas
3. Optimization of the Structural Parameters
4. Application as a Refractive Index SPR-PCF Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chau, Y.-F.; Yeh, H.-H.; Tsai, D. Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. J. Electromagn. Waves Appl. 2010, 24, 1005–1014. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic Control of Double Plasmon-Induced Transparencies in Aperture-Coupled Waveguide-Cavity System. Plasmonics 2018, 13, 345–352. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, G.; Wu, Y.; Zhou, X.; Liao, W. Theoretical Description of Dynamic Transmission Characteristics in MDM Waveguide Aperture-Side-Coupled with Ring Cavity. Plasmonics 2015, 10, 1537–1543. [Google Scholar] [CrossRef]
- Lin, C.-T.; Chang, M.-N.; Huang, H.J.; Chen, C.-H.; Sun, R.-J.; Liao, B.-H.; Chau, Y.-F.C.; Hsiao, C.-N.; Shiao, M.-H.; Tseng, F.-G. Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochim. Acta 2016, 192, 15–21. [Google Scholar] [CrossRef]
- Hsieh, L.-Z.; Chau, Y.-F.C.; Lim, C.M.; Lin, M.-H.; Huang, H.J.; Lin, C.-T.; Syafi’ie, I.M.N. Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commun. 2016, 370, 85–90. [Google Scholar] [CrossRef]
- Chau, Y.-F.; Jiang, Z.-H.; Li, H.-Y.; Lin, G.-M.; Wu, F.-L.; Lin, W.-H. Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog. Electromagn. Res. B 2011, 28, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface plasmon based plasmonic sensors: A review on their past, present and future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.; Yi, Z.; Zhou, Z.; Dai, B.; Zhang, J.; Wu, X.; Wu, P. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Liedberg, B.; Nylander, C.I.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators B Chem. 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Jorgenson, R.C.; Yee, S.S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B Chem. 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Nazeri, K.; Bradley, C. The effect of photonic crystal fibre structure on the performance of Mach-Zehnder interferometer fibre optic gas sensors. Opt. Fiber Technol. 2020, 58, 102294. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Paek, U.-C.; Lee, B.H.; Kim, K.T. Tunable photonic crystal fiber coupler based on a side-polishing technique. Opt. Lett. 2004, 29, 1194–1196. [Google Scholar] [CrossRef]
- Tan, Y.C.; Tou, Z.Q.; Chow, K.K.; Chan, C.C. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications. Opt. Express 2015, 23, 31286–31294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, A.K.; Habib, S.; Hai, N.H.; Razzak, S.A. An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing. Opt. Commun. 2020, 464, 125556. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, H.; Singh, A.; Singh, R.K.; Tiwari, A. D-Shaped Photonic Crystal Fiber–Based Surface Plasmon Resonance Biosensors with Spatially Distributed Bimetallic Layers. Plasmonics 2020, 15, 1323–1330. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.-N.; Siyu, E.; Wang, X.; Yang, D.; Wang, T.; Lu, K.; Wang, F. Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Opt. Laser Technol. 2019, 113, 46–51. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, Y.; Li, X.; Yin, Z.; Wang, L.; Geng, Y.; Hong, X. Characteristics of D-shaped photonic crystal fiber surface plasmon resonance sensors with different side-polished lengths. Appl. Opt. 2017, 56, 1550–1555. [Google Scholar] [CrossRef]
- Chau, Y.-F.; Liu, C.-Y.; Yeh, H.-H.; Tsai, D.P. A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice. Prog. Electromagn. Res. B 2010, 22, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Shao, Y.; Wang, Y.; Cao, S.; Cao, W.; Zhang, F.; Liao, C.; He, J.; Huang, Y.; Hou, M.; et al. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 2017, 25, 20313–20322. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Jiang, Y. Fiber Bragg grating inscription in multi-core photonic crystal fiber by femtosecond laser. Optik 2018, 171, 9–14. [Google Scholar] [CrossRef]
- Haider, F.; Aoni, R.A.; Ahmed, R.; Miroshnichenko, A.E. Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. J. Opt. Soc. Am. B 2018, 35, 2816–2821. [Google Scholar] [CrossRef]
- Popescu, V.; Sharma, A.K.; Marques, C. Resonant interaction between a core mode and two complementary supermodes in a honeycomb PCF reflector-based SPR sensor. Optik 2021, 227, 166121. [Google Scholar] [CrossRef]
- Tong, K.; Wang, F.; Wang, M.; Dang, P.; Wang, Y. Three-core photonic crystal fiber surface plasmon resonance sensor. Opt. Fiber Technol. 2018, 46, 306–310. [Google Scholar] [CrossRef]
- Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Cheng, T.; Li, S. Photonic Crystal Fiber SPR Liquid Sensor Based on Elliptical Detective Channel. Micromachines 2021, 12, 408. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Iftekher, A.N.M.; Hasan, K.R.; Nayen, J.; Islam, S.B.; Hossain, A.; Mustafa, Z.; Tahsin, T. Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor. Opt. Quantum Electron. 2021, 53, 112. [Google Scholar] [CrossRef]
- Gao, D.; Guan, C.; Wen, Y.; Zhong, X.; Yuan, L. Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 2014, 313, 94–98. [Google Scholar] [CrossRef]
- Han, H.; Hou, D.; Luan, N.; Bai, Z.; Song, L.; Liu, J.; Hu, Y. Surface Plasmon Resonance Sensor Based on Dual-Side Polished Microstructured Optical Fiber with Dual-Core. Sensors 2020, 20, 3911. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Yan, X.; Wang, F.; Cheng, T. Design of a Surface Plasmon Resonance Temperature Sensor with Multi-Wavebands Based on Conjoined-Tubular Anti-Resonance Fiber. Photonics 2021, 8, 231. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhu, W.; Yang, M.; Lewis, E. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film: Erratum. Opt. Express 2019, 27, 10813. [Google Scholar] [CrossRef] [PubMed]
- Rafi, H.N.; Kaysir, R.; Islam, J. Air-hole attributed performance of photonic crystal fiber-based SPR sensors. Sens. Bio-Sens. Res. 2020, 29, 100364. [Google Scholar] [CrossRef]
- Rahman, K.M.; Alam, M.S.; Islam, M.A. Highly sensitive gold-coated surface plasmon resonance photonic crystal fiber sensor in near-infrared region. Results Opt. 2022, 7, 100223. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, T.; Li, S.; Suzuki, T.; Ohishi, Y. Practical sensing approach based on surface plasmon resonance in a photonic crystal fiber. OSA Contin. 2018, 1, 1332–1340. [Google Scholar] [CrossRef]
- Kamrunnahar, Q.M.; Haider, F.; Aoni, R.A.; Mou, J.R.; Shifa, S.; Begum, F.; Abdul-Rashid, H.A.; Ahmed, R. Plasmonic Micro-Channel Assisted Photonic Crystal Fiber Based Highly Sensitive Sensor for Multi-Analyte Detection. Nanomaterials 2022, 12, 1444. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, S.; Gao, X. Highly sensitive plasmonics temperature sensor based on photonic crystal fiber with a liquid core. Opt. Commun. 2018, 427, 622–627. [Google Scholar] [CrossRef]
- Liang, H.; Shen, T.; Feng, Y.; Xia, Z.; Liu, H. A Surface Plasmon Resonance Temperature Sensing Unit Based on a Graphene Oxide Composite Photonic Crystal Fiber. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Shakya, A.K.; Singh, S. Design of novel Penta core PCF SPR RI sensor based on fusion of IMD and EMD techniques for analysis of water and transformer oil. Measurement 2022, 188, 110513. [Google Scholar] [CrossRef]
- Kiroriwal, M.; Singal, P. Design and analysis of highly sensitive solid core gold-coated hexagonal photonic crystal fiber sensor based on surface plasmon resonance. J. Nanophotonics 2021, 15, 026008. [Google Scholar] [CrossRef]
- Shakya, A.K.; Singh, S. Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Opt. Commun. 2021, 478, 126372. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, P.; Jindal, P. Surface plasmon resonance biosensor based on a D-shaped photonic crystal fiber using Ti3C2Tx MXene material. Opt. Mater. 2022, 128, 112397. [Google Scholar] [CrossRef]
- Paul, A.K.; Sarkar, A.K.; Islam, H.; Morshed, M. Dual core photonic crystal fiber based surface plasmon resonance biosensor. Optik 2018, 170, 400–408. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Z.-Q.; Li, J. Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 2014, 202, 557–567. [Google Scholar] [CrossRef]
- Yasli, A.; Ademgil, H. Effect of plasmonic materials on photonic crystal fiber based surface plasmon resonance sensors. Mod. Phys. Lett. B 2019, 33, 1950157. [Google Scholar] [CrossRef]
- Steel, M.J.; Osgood, R.M. Elliptical-hole photonic crystal fibers. Opt. Lett. 2001, 26, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-S.; Chau, Y.-F.; Yeh, H.-H.; Tsai, D.P. Highly birefringent index-guiding photonic crystal fiber with squeezed differently sized air-holes in cladding. Jpn. J. Appl. Phys. 2008, 47, 3755. [Google Scholar] [CrossRef] [Green Version]
- Chau, Y.-F.; Yeh, H.-H.; Tsai, D.P. Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding. Jpn. J. Appl. Phys. 2007, 46, L1048. [Google Scholar] [CrossRef]
- Yang, K.-Y.; Chau, Y.-F.; Huang, Y.-W.; Yeh, H.-Y.; Tsai, D.P. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding. J. Appl. Phys. 2011, 109, 093103. [Google Scholar] [CrossRef]
- Chau, Y.-F.; Yeh, H.-H.; Tsai, D.P. A New Type of Optical Antenna: Plasmonics Nanoshell Bowtie Antenna with Dielectric Hole. J. Electromagn. Waves Appl. 2010, 24, 1621–1632. [Google Scholar] [CrossRef]
- Chau, Y.-F.C. Mid-infrared sensing properties of a plasmonic metal–insulator–metal waveguide with a single stub including defects. J. Phys. D Appl. Phys. 2020, 53, 115401. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, W.; Yi, Z.; Ma, G.; Xiang, G.; Dai, B.; Yu, Y.; Zhou, G.; Wu, P.; Liu, C. Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. Opt. Express 2022, 30, 39055–39067. [Google Scholar] [CrossRef]
- Isti, M.I.A.; Talukder, H.; Islam, S.M.R.; Nuzhat, S.; Hosen, A.S.M.S.; Cho, G.H.; Biswas, S.K. Asymmetrical D-channel photonic crystal fiber-based plasmonic sensor using the wavelength interrogation and lower birefringence peak method. Results Phys. 2020, 19, 103372. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Q.; Li, X.; Zhou, H.; Hong, X.; Geng, Y. Experimental realization of D-shaped photonic crystal fiber SPR sensor. J. Phys. D Appl. Phys. 2017, 50, 025101. [Google Scholar] [CrossRef]
- Al Mahfuz, M.; Hasan, R.; Momota, M.R.; Masud, A.; Akter, S. Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method. OSA Contin. 2019, 2, 1713–1725. [Google Scholar] [CrossRef]
- Boyd, D.A.; Greengard, L.; Brongersma, M.; El-Naggar, M.Y.; Goodwin, D.G. Plasmon-assisted chemical vapor deposition. Nano Lett. 2006, 6, 2592–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Liang, T.; Gu, Q.; Liu, Q.; Ying, Y.; Si, G. A High Refractive Index Plasmonic Micro-Channel Sensor Based on Photonic Crystal Fiber. Nanomaterials 2022, 12, 3764. [Google Scholar] [CrossRef] [PubMed]
- Guiyao, Z.; Zhiyun, H.; Shuguang, L.; Lantian, H. Fabrication of glass photonic crystal fibers with a die-cast process. Appl. Opt. 2006, 45, 4433–4436. [Google Scholar] [CrossRef] [PubMed]
- Issa, N.A.; van Eijkelenborg, M.A.; Fellew, M.; Cox, F.; Henry, G.; Large, M.C.J. Fabrication and study of microstructured optical fibers with elliptical holes. Opt. Lett. 2004, 29, 1336–1338. [Google Scholar] [CrossRef] [Green Version]
- Beltrán-Mejía, F.; Chesini, G.; Silvestre, E.; George, A.K.; Knight, J.C.; Cordeiro, C.M. Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes. Opt. Lett. 2010, 35, 544–546. [Google Scholar] [CrossRef] [Green Version]
- Zha, F.; Li, J.; Sun, P.; Ma, H. Highly sensitive selectively coated D-shape photonic crystal fibers for surface plasmon resonance sensing. Phys. Lett. A 2019, 383, 1825–1830. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Y.; Ma, W.; Liu, N.; Fan, S. D-Shaped Surface Plasmon Photonic Crystal Fiber Temperature Sensor. Plasmonics 2022, 17, 1911–1919. [Google Scholar] [CrossRef]
- Zuhayer, A.; Shafkat, A. Design and analysis of a gold-coated dual-core photonic crystal fiber bio-sensor using surface plasmon resonance. Sens. Bio.-Sens. Res. 2021, 33, 100432. [Google Scholar] [CrossRef]
- Akter, S.; Rahman, Z.; Mahmud, S. Highly sensitive open-channels based plasmonic biosensor in visible to near-infrared wavelength. Results Phys. 2019, 13, 102328. [Google Scholar] [CrossRef]
- An, G.; Hao, X.; Li, S.; Yan, X.; Zhang, X. D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt. 2017, 56, 6988–6992. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Han, Y.; Liu, Y.; Gao, J. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl. Opt. 2018, 57, 5268–5272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thenmozhi, H.; Rajan, M.S.M.; Ahmed, K. D-shaped PCF sensor based on SPR for the detection of carcinogenic agents in food and cosmetics. Optik 2019, 180, 264–270. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, M.; Shum, P.; Chu, L. An ultrahighly sensitive photonic crystal fiber based surface plasmon resonance sensor. Optik 2020, 212, 164649. [Google Scholar] [CrossRef]
- Yasli, A.; Ademgil, H.; Haxha, S.; Aggoun, A. Multi-Channel Photonic Crystal Fiber Based Surface Plasmon Resonance Sensor for Multi-Analyte Sensing. IEEE Photonics J. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Chu, S.; Nakkeeran, K.; Abobaker, A.M.; Aphale, S.S.; Sivabalan, S.; Babu, P.R.; Senthilnathan, K. A surface plasmon resonance bio-sensor based on dual core D-shaped photonic crystal fibre embedded with silver nanowires for multisensing. IEEE Sens. J. 2020, 21, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Fu, R.; Cheng, T.; Li, S. A Highly Sensitive Refractive Index Sensor Based on a V-Shaped Photonic Crystal Fiber with a High Refractive Index Range. Sensors 2021, 21, 3782. [Google Scholar] [CrossRef]
- Rahman, A.; Ahmed, T.; Haque, I.; Anower, S. A Photonic Crystal Fiber Based Asymmetric Slotted Structured Highly Sensitive Refractive Index Plasmonic Biosensor. J. Sens. Technol. 2022, 12, 1–17. [Google Scholar] [CrossRef]
B1 | B2 | B3 | C1 | C2 | C3 |
---|---|---|---|---|---|
0.696163 | 0.4079426 | 0.897479400 | 0.0046791486 | 0.0135120631 | 97.9340025 |
ε∞ | ω | ωD/2π | γD/2π | ΩL | ΓL/2π |
---|---|---|---|---|---|
5.9673 | 2πc/λ | 2113.6 THz | 15.9 THz | 650.07 THz | 104.86 THz |
a1x (μm) | a1y (μm) | a2x (μm) | a2y (μm) | a3x (μm) | a3y (μm) | e | tAu (nm) | h (μm) | nana |
---|---|---|---|---|---|---|---|---|---|
0.8e | 0.8 | 0.7e | 0.7 | 0.2e | 0.4 | 0.6 | 30 | 0.4 | 1.38 |
a1x (μm) | a1y (μm) | a2x (μm) | a2y (μm) | a3x (μm) | a3y μm) | e | tAu (nm) | h (μm) |
---|---|---|---|---|---|---|---|---|
0.7e | 0.7 | 0.78e | 0.78 | 0.35e | 0.35 | 0.55 | 30 | 0.4 |
nana | CL (dB/cm) | λpeak (cm) | Sensor Length (cm) | Sensitivity (nm/RIU) | Resolution (RIU) |
---|---|---|---|---|---|
1.31 | 24.62 | 554 | 0.0406 | 1100 | 9.0909 10−5 |
1.32 | 31.55 | 565 | 0.0316 | 1100 | 9.0909 10−5 |
1.33 | 41.78 | 576 | 0.0239 | 1300 | 7.6923 10−5 |
1.34 | 57.31 | 589 | 0.01744 | 1700 | 5.8823 10−5 |
1.35 | 81.86 | 606 | 0.01221 | 2400 | 4.1667 10−5 |
1.36 | 132.2 | 630 | 0.00756 | 3100 | 3.2258 10−5 |
1.37 | 252.34 | 661 | 0.00396 | 5000 | 2.0000 10−5 |
1.38 | 478.11 | 711 | 0.00209 | 8800 | 1.1363 10−5 |
1.39 | 1205.00 | 799 | 0.00083 | 16,000 | 5.8823 10−5 |
1.391 | 1288.20 | 815 | 0.00078 | 18,000 | 5.56 10−6 |
1.392 | 1297.90 | 833 | 0.00077 | 16,000 | 6.25 10−6 |
1.393 | 1367.00 | 849 | 0.00073 | 116,500 | 8.58 10−7 |
1.395 | 3121.80 | 1082 | 0.00032 | N/A | N/A |
Refs./Year | RI Range | Wavelength Range (nm) | Max. Sensitivity (nm RIU−1) | Resolution (RIU) |
---|---|---|---|---|
[64]/2017 | 1.32–1.35 | 650–850 | 5600 | 9.650 10−6 |
[65]/2018 | 1.40–1.43 | 904–1359 | 15,180 | 5.600 10−6 |
[66]/2019 | 1.414–1.424 | 1900–2200 | 50,000 | 4.000 10−4 |
[67]/2020 | 1.39–1.43 | 650–1400 | 21,200 | 4.720 10−6 |
[68]/2020 | 1.33–1.36 | 400–800 | 3083 | 3.200 10−5 |
[69]/2021 | 1.35–1.50 | 1800–2200 | 4000 | 2.940 10−5 |
[70]/2021 | 1.43–1.49 | 900–1250 | 12,719 | 7.460 10−6 |
[41]/2022 | 1.33–1.39 | 600–960 | 13,000 | 1.075 10−6 |
[71]/2022 | 1.30–1.44 | 800–1100 | 1100 | 9.090 10−6 |
This work | 1.31–1.3950 | 550–1200 | 116,500 | 8.58 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, C.-T.C.; Kooh, M.R.R.; Chau, Y.-F.C.; Thotagamuge, R. Susceptible Plasmonic Photonic Crystal Fiber Sensor with Elliptical Air Holes and External-Flat Gold-Coated Surface. Photonics 2022, 9, 916. https://doi.org/10.3390/photonics9120916
Chao C-TC, Kooh MRR, Chau Y-FC, Thotagamuge R. Susceptible Plasmonic Photonic Crystal Fiber Sensor with Elliptical Air Holes and External-Flat Gold-Coated Surface. Photonics. 2022; 9(12):916. https://doi.org/10.3390/photonics9120916
Chicago/Turabian StyleChao, Chung-Ting Chou, Muhammad Raziq Rahimi Kooh, Yuan-Fong Chou Chau, and Roshan Thotagamuge. 2022. "Susceptible Plasmonic Photonic Crystal Fiber Sensor with Elliptical Air Holes and External-Flat Gold-Coated Surface" Photonics 9, no. 12: 916. https://doi.org/10.3390/photonics9120916
APA StyleChao, C. -T. C., Kooh, M. R. R., Chau, Y. -F. C., & Thotagamuge, R. (2022). Susceptible Plasmonic Photonic Crystal Fiber Sensor with Elliptical Air Holes and External-Flat Gold-Coated Surface. Photonics, 9(12), 916. https://doi.org/10.3390/photonics9120916