Principle and Performance Analysis of the Levenberg–Marquardt Algorithm in WMS Spectral Line Fitting
Abstract
:1. Introduction
2. Methodology
2.1. WMS-2f/1f Theoretical Model
2.2. LM Algorithm Overview
2.3. The Design Process of the LM-Based Spectral Fitting Technique
- Step 1:
- Initial weights. Let the number of iterations t = 0, the adjustment of the appropriate coefficient, μ, initial parameter, β, and the error tolerance, ε, be set;
- Step 2:
- The Jacobian matrix J is calculated according to the current parameters;
- Step 3:
- During iterative optimization, the parameter βt+1 is updated by Equation (8);
- Step 4:
- Based on the updated parameters, the error between the simulated and measured spectra is recalculated. If z > ε, adjust the damping factor μ and return to Step 2. Otherwise, the iteration is terminated, and the results are output.
3. Simulation Results and Analysis
3.1. Effect of the Number of Estimated Parameters
3.2. Effect of Estimation Errors of the Initial Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, Y.; Lan, L.; Ding, Y.; Peng, Z. Measurement of the absolute absorbance based on wavelength modulation spectroscopy. Appl. Phys. B-Lasers Opt. 2017, 123, 1–11. [Google Scholar] [CrossRef]
- Du, Y.; Peng, Z.; Ding, Y. Wavelength modulation spectroscopy for recovering absolute absorbance. Opt. Express 2018, 26, 9263–9272. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Dong, L.; Wu, H.; Li, S.; Zhang, L.; Ma, W.; Yin, W.; Xiao, L.; Jia, L.; Tittel, F.K. Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy. Opt. Express 2018, 26, 24318–24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Chu, T.; Liu, Y.; Wang, P. Modeling of Scanned Wavelength Modulation Spectroscopy Considering Nonlinear Behavior of Intensity Response. IEEE Sens. J. 2021, 22, 2301–2308. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, F.; Bounds, J.; Aluauee, E.; Kolomenskii, A.; Dong, Q.; He, J.; Meadows, C.; Zhang, S.; Schuessler, H. Spectroscopic trace gas detection in air-based gas mixtures: Some methods and applications for breath analysis and environmental monitoring. J. Appl. Phys. 2022, 131, 220901–220925. [Google Scholar] [CrossRef]
- Duffin, K.; McGettrick, A.J.; Johnstone, W.; Stewart, G.; Moodie, D.G. Tunable diode-laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line shapes. J. Lightwave Technol. 2007, 25, 3114–3125. [Google Scholar] [CrossRef]
- Qu, Z.; Ghorbani, R.; Valiev, D.; Schmidt, F.M. Calibration-free scanned wavelength modulation spectroscopy–application to H2O and temperature sensing in flames. Opt. Express 2015, 23, 16492–16499. [Google Scholar] [CrossRef] [PubMed]
- Behera, A.; Wang, A. Calibration-free wavelength modulation spectroscopy: Symmetry approach and residual amplitude modulation normalization. Appl. Optics 2016, 55, 4446–4455. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Wilson, D.; Lengden, M.; Chakraborty, A.L.; Stewart, G.; Johnstone, W. Calibration-free WMS using a CW-DFB-QCL, a VCSEL, and an edge-emitting DFB laser with in-situ real-time laser parameter characterization. IEEE Photonics J. 2017, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Mei, L.; Deng, H.; Xu, Z.; Chen, B.; Kan, R. Wavelength modulation spectroscopy by employing the first harmonic phase angle method. Opt. Express 2019, 27, 12137–12146. [Google Scholar] [CrossRef]
- Roy, A.; Chakraborty, A.L. Intensity modulation-normalized calibration-free 1f and 2f wavelength modulation spectroscopy. IEEE Sens. J. 2020, 20, 12691–12701. [Google Scholar] [CrossRef]
- Li, R.; Li, F.; Lin, X.; Yu, X. Linear calibration-free wavelength modulation spectroscopy. Microw. Opt. Technol. Lett. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Li, H.; Rieker, G.B.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Optics 2006, 45, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Optics 2009, 48, 5546–5560. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, P.; Chu, T.; Peng, F.; Sun, Y. Second Harmonic Phase Angle Method Based on WMS for Background-Free Gas Detection. IEEE Sens. J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Strand, C.L.; Schultz, I.A.; Sun, K.; Jeffries, J.B.; Hanson, R.K. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption line shapes. Appl. Optics 2014, 53, 356–367. [Google Scholar] [CrossRef]
- Li, J.; Deng, H.; Sun, J.; Yu, B.; Fischer, H. Simultaneous atmospheric CO, N2O and H2O detection using a single quantum cascade laser sensor based on dual-spectroscopy techniques. Sens Actuators B-Chem. 2016, 231, 723–732. [Google Scholar] [CrossRef]
- Zang, Y.; Xu, Z.; Xia, H.; Huang, A.; He, Y.; Kan, R. Method for Measuring High Temperature Spectral Line Parameters Based on Calibration-Free Wavelength Modulation Technology. Chin. J. Lasers 2020, 47, 278–285. [Google Scholar]
- Raza, M.; Ma, L.; Yao, S.; Chen, L.; Ren, W. High-temperature dual-species (CO/NH3) detection using calibration-free scanned-wavelength-modulation spectroscopy at 2.3 μm. Fuel 2021, 305, 1–8. [Google Scholar] [CrossRef]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Liger, V.; Mironenko, V.; Kuritsyn, Y.; Bolshov, M. Advanced Fiber-Coupled Diode Laser Sensor for Calibration-Free 1f-WMS Determination of an Absorption Line Intensity. Sensors 2020, 20, 6286. [Google Scholar] [CrossRef] [PubMed]
Parameters | Accurate Value |
---|---|
C [ppmv] | 296 |
i1 | 0.20 |
i2 | 3 × 10−3 |
ψ1[π] | 1.60 |
ψ2[π] | 1.50 |
m[cm−1] | 1.43 |
Δvc/2[cm−1/atm] | 0.0777 |
Estimated Parameters | Relative Error of Concentration Cδ (%) | Fitting Degree H | Convergence Time (s) |
---|---|---|---|
2 [m, A] | 1.5 | 3.2 × 10−8 | 104 |
3 [m, i1, A] | 2.9 | 8.7 × 10−7 | 140 |
4[m, i1, i2, A] | 3.4 | 5.4 × 10−6 | 173 |
5[m, i1, i2, ψ1, A] | 4.8 | 1.9 × 10−5 | 201 |
6[m, i1, i2, ψ1, ψ2, A] | 6.0 | 3.0 × 10−3 | 236 |
Estimation Errors of the Initial Parameters (%) | Relative Error of Concentration Cδ (%) | Fitting Degree H | Convergence Time (s) |
---|---|---|---|
1 | 1.2 | 3.6 × 10−12 | 243 |
2 | 1.6 | 1.6 × 10−11 | 241 |
3 | 2.7 | 4.2 × 10−11 | 239 |
4 | 3.5 | 8.2 × 10−11 | 238 |
5 | 5.8 | 1.4 × 10−9 | 244 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, P.; Zhang, T.; Li, K.; Peng, F.; Zhu, C. Principle and Performance Analysis of the Levenberg–Marquardt Algorithm in WMS Spectral Line Fitting. Photonics 2022, 9, 999. https://doi.org/10.3390/photonics9120999
Sun Y, Wang P, Zhang T, Li K, Peng F, Zhu C. Principle and Performance Analysis of the Levenberg–Marquardt Algorithm in WMS Spectral Line Fitting. Photonics. 2022; 9(12):999. https://doi.org/10.3390/photonics9120999
Chicago/Turabian StyleSun, Yongjie, Pengpeng Wang, Tingting Zhang, Kun Li, Feng Peng, and Cunguang Zhu. 2022. "Principle and Performance Analysis of the Levenberg–Marquardt Algorithm in WMS Spectral Line Fitting" Photonics 9, no. 12: 999. https://doi.org/10.3390/photonics9120999
APA StyleSun, Y., Wang, P., Zhang, T., Li, K., Peng, F., & Zhu, C. (2022). Principle and Performance Analysis of the Levenberg–Marquardt Algorithm in WMS Spectral Line Fitting. Photonics, 9(12), 999. https://doi.org/10.3390/photonics9120999