Design and Performance Analysis of NadamSPGD Algorithm for Sensor-Less Adaptive Optics in Coherent FSOC Systems
Abstract
:1. Introduction
2. System Model and Theoretical Analysis
2.1. CFSOC System Model with SLAO
2.2. DM Model in SLAO
2.3. Theoretical Basis of the CFSOC
3. NadamSPGD Algorithm in SLAO
3.1. Fitness in SLAO
3.2. Conventional SPGD in SLAO
3.3. NadamSPGD
Algorithm 1 Pseudo code of the NadamSPGD algorithm. |
Pseudo Code of the NadamSPGD Algorithm |
Input: The learning rate α, the hyper-parameters μ and v, the constant ε, the amplitude of random perturbation voltages Δu, and the maximal number of iterations N. |
. |
2: for k = 1, …, N do |
(see Equation (10)) |
(see Equations (11) and (12)) |
(see Equations (13) and (14)) |
(see Equation (15)) |
10: end for |
4. Simulation and Experiment
4.1. Simulation Analysis
4.2. Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaiswal, A.; Bhatnagar, M.R. Free-Space optical communication: A Diversity-Multiplexing tradeoff perspective. IEEE Trans. Inform. Theory 2019, 65, 1113–1125. [Google Scholar] [CrossRef]
- Qin, D.; Wang, Y.; Zhou, T. Performance analysis of hybrid radio frequency and free space optical communication networks with cooperative spectrum sharing. Photonics 2021, 8, 108. [Google Scholar] [CrossRef]
- Chen, M.; Liu, C.; Rui, D.; Xian, H. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle. Opt. Express 2018, 26, 4230–4242. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Wu, Z.; Ma, S.; Gu, Y.; Li, X. Design and performance analysis of probabilistically shaped QAM signals for coherent FSO systems with Gamma-Gamma turbulence channels. Appl. Sci. 2021, 11, 9805. [Google Scholar] [CrossRef]
- Li, M.; Cvijetic, M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Appl. Opt. 2015, 54, 1453–1462. [Google Scholar] [CrossRef]
- Belmonte, A. Influence of atmospheric phase compensation on optical heterodyne power measurements. Opt. Express 2008, 16, 6756–6767. [Google Scholar] [CrossRef]
- Ma, J.; Li, K.; Tan, L.; Yu, S.; Cao, Y. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over gamma-gamma atmospheric turbulence. Appl. Opt. 2015, 54, 7575–7585. [Google Scholar] [CrossRef]
- Zuo, L.; Dang, A.; Ren, Y.; Guo, H. Performance of phase compensated coherent free space optical communications through non-kolmogorov turbulence. Opt. Commun. 2011, 284, 1491–1495. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, X.; Liu, W.; Gu, H. Performance analysis of a coherent free space optical communication system based on experiment. Opt. Express 2017, 25, 15299–15312. [Google Scholar] [CrossRef]
- Huang, J.; Mei, H.; Deng, K.; Kang, L.; Zhu, W.; Yao, Z. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation. Opt. Commun. 2015, 356, 574–577. [Google Scholar] [CrossRef]
- Takenaka, H.; Toyoshima, M.; Takayama, Y. Experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks. Opt. Express 2012, 20, 15301–15308. [Google Scholar] [CrossRef] [PubMed]
- Primmerman, C.; Price, T.; Humphreys, R.; Zollars, B.; Barclay, H.; Herrmann, J. Atmospheric-compensation experiments in strong-scintillation conditions. Appl. Opt. 1995, 34, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Weyrauch, T.; Vorontsov, M. Atmospheric compensation with a speckle beacon in strong scintillation conditions: Directed energy and laser communication applications. Appl. Opt. 2005, 44, 6388–6401. [Google Scholar] [CrossRef]
- Li, M.; Gao, W.; Cvijetic, M. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction. Appl. Opt. 2017, 56, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, R.; Wang, Y.; Mao, H.; Xu, G.; Cao, Z.; Xuan, L. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication. Opt. Commun. 2021, 482, 126571. [Google Scholar] [CrossRef]
- Li, Z.; Cao, J.; Zhao, X.; Liu, W. Swarm intelligence for atmospheric compensation in free space optical communication—Modified shuffled frog leaping algorithm. Opt. Laser Technol. 2015, 66, 89–97. [Google Scholar] [CrossRef]
- Gu, H.; Liu, M.; Liu, H.; Yang, X.; Liu, W. An algorithm combining convolutional neural networks with SPGD for SLAO in FSOC. Opt. Commun. 2020, 475, 126243. [Google Scholar] [CrossRef]
- He, X.; Zhao, X.; Cui, S.; Gu, H. A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication. Opt. Commun. 2018, 429, 127–137. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, X.; Li, Z.; Liu, W.; Song, Y. Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication. Optik 2014, 125, 6142–6147. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, X.; Zhang, D.; Wang, X.; Hu, Q.; Li, J.; Liu, C. Coherent beam combination of ten fiber arrays via stochastic parallel gradient descent algorithm. J. Opt. Technol. 2015, 82, 16–20. [Google Scholar] [CrossRef]
- Zhao, H.; An, J.; Yu, M.; Lv, D.; Kuang, K.; Zhang, T. Nesterov-accelerated adaptive momentum estimation-based wavefront distortion correction algorithm. Appl. Opt. 2021, 60, 7177–7185. [Google Scholar] [CrossRef] [PubMed]
- Lachinova, S.L.; Vorontsov, M.A. Performance analysis of an adaptive phase-locked tiled fiber array in atmospheric turbulence conditions. Target-in-the-Loop Atmos. Track. Imaging Compens. II 2005, 5895, 58950O. [Google Scholar]
- Gao, Q.; Jiang, Z.; Yi, S.; Xie, W.; Liao, T. Correcting the aero-optical aberration of the supersonic mixing layer with adaptive optics: Concept validation. Appl. Opt. 2012, 51, 3922–3929. [Google Scholar] [CrossRef]
- Wu, K.; Sun, Y.; Huai, Y.; Jia, S.; Chen, X.; Jin, Y. Multi-perturbation stochastic parallel gradient descent method for wavefront correction. Opt. Express 2015, 23, 2933–2944. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhen, L.; Mao, Y.; Zhu, S.; Zhou, X.; Zhou, G. Adaptive stochastic parallel gradient descent approach for efficient fiber coupling. Opt. Express 2020, 28, 13141–13154. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, L.; Jiang, Z.; Wang, T.; Guo, J. Improved SPGD algorithm to avoid local extremum for incoherent beam combining. Opt. Commun. 2017, 382, 547–555. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.; Che, D.; Guo, J.; Wang, T. Coherent beam combining based on the SPGD algorithm with a momentum term. Optik 2020, 202, 163650. [Google Scholar] [CrossRef]
- Ma, S.; Yang, P.; Lai, B.; Su, C.; Zhao, W.; Yang, K.; Jin, R.; Cheng, T.; Xu, B. Adaptive Gradient Estimation Stochastic Parallel Gradient Descent Algorithm for Laser Beam Cleanup. Photonics 2021, 8, 165. [Google Scholar] [CrossRef]
- Dozat, T. Incorporating Nesterov momentum into Adam. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Alda, J.; Boreman, G. Zernike-based matrix model of deformable mirrors: Optimization of aperture size. Appl. Opt. 1993, 32, 2431–2438. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Rao, C.; Jiang, W. Modified Gaussian influence function of deformable mirror actuators. Opt. Express 2008, 16, 108–114. [Google Scholar] [CrossRef]
- Liu, C.; Chen, S.; Li, X.; Xian, H. Performance evaluation of adaptive optics for atmospheric coherent laser communications. Opt. Express 2014, 22, 15554–15563. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, M.; Chen, S.; Xian, H. Adaptive optics for the free-space coherent optical communications. Opt. Commun. 2016, 361, 21–24. [Google Scholar] [CrossRef]
- Greenwood, D. Bandwidth specification for adaptive optics systems. J. Opt. Soc. Am. 1977, 67, 390–393. [Google Scholar] [CrossRef]
- Tyson, R.; Wizinowich, P. Principles of Adaptive Optics; CRC: Boca Raton, FL, USA, 1991. [Google Scholar]
- Huang, J.; Liu, C.; Deng, K.; Yao, Z.; Xian, H.; Li, X. Probability of the residual wavefront variance of an adaptive optics system and its application. Opt. Express 2016, 24, 2818–2928. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, V. Strehl ratio for primary aberrations in terms of their aberration variance. J. Opt. Soc. Am. 1983, 73, 860–861. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Noll, R.J. Zernike polynomials and atmospheric-turbulence. J. Opt. Soc. Am. 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Cui, S.; Zhao, X.; He, X.; Gu, H. A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System. Curr. Opt. Photonics 2018, 2, 612–622. [Google Scholar]
- Yang, L.; Yao, K.; Wang, J.; Cao, J.; Lin, X.; Liu, X.; Liu, W.; Gu, H. Performance analysis of 349-element adaptive optics unit for a coherent free space optical communication system. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Wang, J.; Yang, L.; Zhang, H. Design and Performance Analysis of NadamSPGD Algorithm for Sensor-Less Adaptive Optics in Coherent FSOC Systems. Photonics 2022, 9, 77. https://doi.org/10.3390/photonics9020077
Xu L, Wang J, Yang L, Zhang H. Design and Performance Analysis of NadamSPGD Algorithm for Sensor-Less Adaptive Optics in Coherent FSOC Systems. Photonics. 2022; 9(2):77. https://doi.org/10.3390/photonics9020077
Chicago/Turabian StyleXu, Li, Jianli Wang, Leqiang Yang, and Heng Zhang. 2022. "Design and Performance Analysis of NadamSPGD Algorithm for Sensor-Less Adaptive Optics in Coherent FSOC Systems" Photonics 9, no. 2: 77. https://doi.org/10.3390/photonics9020077
APA StyleXu, L., Wang, J., Yang, L., & Zhang, H. (2022). Design and Performance Analysis of NadamSPGD Algorithm for Sensor-Less Adaptive Optics in Coherent FSOC Systems. Photonics, 9(2), 77. https://doi.org/10.3390/photonics9020077