Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes
Abstract
:1. Introduction
2. Structure Design and Numerical Setups
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najer, D.; Söllner, I.; Sekatski, P.; Dolique, V.; Löbl, M.C.; Riedel, D.; Schott, R.; Starosielec, S.; Valentin, S.R.; Wieck, A.D.; et al. A gated quantum dot strongly coupled to an optical microcavity. Sci. Adv. 2019, 575, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satapathy, S.; Khatoniar, M.; Parappuram, D.K.; Liu, B.; John, G.; Feist, J.; Garcia-Vidal, F.J.; Menon, V.M. Selective isomer emission via funneling of exciton polaritons. Sci. Adv. 2021, 7, eabj0997. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Fei, Z. Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides. Adv. Opt. Mater. 2019, 8, 1901003. [Google Scholar] [CrossRef]
- Hertzog, M.; Wang, M.; Mony, J.; Börjesson, K. Strong light–matter interactions: A new direction within chemistry. Chem. Soc. Rev. 2019, 48, 937–961. [Google Scholar] [CrossRef] [Green Version]
- Kottilil, D.; Babusenan, A.; Vijayan, C.; Ji, W. Strong light–matter interaction in organic microcavity polaritons: Essential criteria, design principles and typical configurations. Eur. Phys. J. Spec. Top. 2021. [Google Scholar] [CrossRef]
- Ameling, R.; Giessen, H. Microcavity plasmonics: Strong coupling of photonic cavities and plasmons. Laser Photonics Rev. 2013, 7, 141–169. [Google Scholar] [CrossRef]
- Baranov, D.G.; Wersall, M.; Cuadra, J.; Antosiewicz, T.J.; Shegai, T. Novel Nanostructures and Materials for Strong Light-Matter Interactions. ACS Photonics 2018, 5, 24–42. [Google Scholar] [CrossRef]
- Dovzhenko, D.S.; Ryabchuk, S.V.; Rakovich, Y.P.; Nabiev, I.R. Light–matter interaction in the strong coupling regime: Configurations, conditions, and applications. Nanoscale 2018, 10, 3589–3605. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, Y.; Xu, J.; Yong, K.T.; Qu, J.; Song, J. Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application. Laser Photonics Rev. 2019, 13, 1800219. [Google Scholar] [CrossRef]
- Ramezani, M.; Berghuis, M.; Rivas, J.G. Strong light–matter coupling and exciton-polariton condensation in lattices of plasmonic nanoparticles [Invited]. J. Opt. Soc. Am. B 2019, 36, E88–E103. [Google Scholar] [CrossRef] [Green Version]
- Ameling, R.; Giessen, H. Cavity Plasmonics: Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by a Photonic Microcavity. Nano Lett. 2010, 10, 4394–4398. [Google Scholar] [CrossRef] [PubMed]
- Ameling, R.; Langguth, L.; Hentschel, M.; Mesch, M.; Braun, P.V.; Giessen, H. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 2010, 97, 253116. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Lei, D.Y.; Wondraczek, L.; Nazabal, V.; Maier, S.A. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat. Commun. 2012, 3, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Nie, H.; Peng, C.; Qi, S.; Tang, C.; Zhang, Y.; Wang, L.; Park, G.S. Enhancing the Magnetic Plasmon Resonance of Three-Dimensional Optical Metamaterials via Strong Coupling for High-Sensitivity Sensing. J. Light. Technol. 2018, 36, 3481–3485. [Google Scholar] [CrossRef]
- Alrasheed, S.; Fabrizio, E.D. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors. Sci. Rep. 2017, 7, 10524. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zu, S.; Zhang, Z.; Zheng, L.; Jiang, Q.; Du, B.; Luo, Y.; Gong, Y.; Zhang, Y.; Lin, F.; et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron. Adv. 2019, 2, 190008. [Google Scholar] [CrossRef]
- Bisht, A.; Cuadra, J.; Wersall, M.; Canales, A.; Antosiewicz, T.J.; Shegai, T. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems. Nano Lett. 2019, 19, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ji, L.; Gao, N.; Wang, H.; Ge, S.; Huang, K.; Kang, J.; Yu, E.T. Peak splitting and locking behavior arising from Fano interference between localized surface plasmons and cavity modes. Phys. Rev. B 2019, 99, 125420. [Google Scholar] [CrossRef] [Green Version]
- Baranov, D.G.; Munkhbat, B.; Zhukova, E.; Bisht, A.; Canales, A.; Rousseaux, B.; Johansson, G.; Antosiewicz, T.J.; Shegai, T. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions. Nat. Commun. 2020, 11, 2715. [Google Scholar] [CrossRef]
- Ameling, R.; Dregely, D.; Giessen, H. Strong coupling of localized and surface plasmons to microcavity modes. Opt. Lett. 2011, 36, 2218–2220. [Google Scholar] [CrossRef]
- Chen, S.; Li, G.; Lei, D.; Cheah, K.W. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity. Nanoscale 2013, 5, 9129–9133. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, C.; Gan, F.; Li, H.; Gong, Q.; Chen, J. Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting. Nanophotonics 2017, 6, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.Y.; Li, Z.; Brown, K.A.; O’Brien, M.N.; Ross, M.B.; Zhou, Y.; Butun, S.; Chen, P.C.; Schatz, G.C.; Dravid, V.P.; et al. Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Lett. 2015, 15, 4699–4703. [Google Scholar] [CrossRef]
- Saito, H.; Yoshimoto, D.; Lourenco-Martins, H.; Yamamoto, N.; Sannomiya, T. Hybridization of Gap Modes and Lattice Modes in a Plasmonic Resonator Array with a Metal-Insulator-Metal Structure. ACS Photonics 2019, 6, 2618–2625. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, T.; Tang, C.; Mao, P.; Liu, Y.; Yu, Y.; Liu, Z. Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes. IEEE Photon. Technol. Lett. 2016, 28, 1529–1532. [Google Scholar] [CrossRef]
- Wang, W.; Ramezani, M.; Väkeväinen, A.I.; Törmä, P.; Rivas, J.G.; Odom, T.W. The Rich Photonic World of Plasmonic Nanoparticle Arrays. Mater. Today 2018, 21, 303–314. [Google Scholar] [CrossRef]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Wang, D.; Guan, J.; Hu, J.; Bourgeois, M.R.; Odom, T.W. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices. Acc. Chem. Res. 2019, 52, 2997–3007. [Google Scholar] [CrossRef]
- Väkeväinen, A.I.; Moerland, R.J.; Rekola, H.T.; Eskelinen, A.P.; Martikainen, J.P.; Kim, D.H.; Törmä, P. Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Lett. 2014, 14, 1721–1727. [Google Scholar] [CrossRef]
- Shi, L.; Hakala, T.K.; Rekola, H.T.; Martikainen, J.P.; Moerland, R.J.; Törmä, P. Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes. Phys. Rev. Lett. 2014, 112, 153002. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Le-Van, Q.; Vaianella, F.; Maes, B.; Barker, S.E.; Godiksen, R.H.; Curto, A.G.; Rivas, J.G. Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances. ACS Photonics 2019, 6, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.K.; Bourgeois, M.R.; Cherqui, C.; Juarez, X.G.; Wang, W.; Odom, T.W.; Schatz, G.C.; Basu, J.K. Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano 2020, 14, 7347–7357. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, G.; Lu, Y.; Li, G. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. Opt. Express 2019, 27, 25384–25394. [Google Scholar] [CrossRef]
- Moharam, M.G.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Approach. J. Opt. Soc. Am. A 1995, 12, 1077–1086. [Google Scholar] [CrossRef]
- Lalanne, P. Improved formulation of the coupled-wave method for two-dimensional gratings. J. Opt. Soc. Am. A 1997, 14, 1592–1598. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Benisty, H. Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B 2006, 73, 075107. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Alast, F.H.; Li, G.; Cheah, K.W. Rabi-like splitting from large area plasmonic microcavity. AIP Adv. 2017, 7, 085201. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Cassan, E.; Bouchemat, M. Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik 2015, 126, 3467–3471. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Bouchemat, M. Optimization of Q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 2015, 90, 065504. [Google Scholar] [CrossRef]
- Fang, X.; Xiong, L.; Shi, J.; Li, G. High-Q quadrupolar plasmonic lattice resonances in horizontal metal-insulator-metal gratings. Opt. Lett. 2021, 46, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Liu, W.; Liu, S.; Yang, T.; Dong, Y.; Sun, D.; Li, G. Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes. Photonics 2022, 9, 84. https://doi.org/10.3390/photonics9020084
Shi Y, Liu W, Liu S, Yang T, Dong Y, Sun D, Li G. Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes. Photonics. 2022; 9(2):84. https://doi.org/10.3390/photonics9020084
Chicago/Turabian StyleShi, Yunjie, Wei Liu, Shidi Liu, Tianyu Yang, Yuming Dong, Degui Sun, and Guangyuan Li. 2022. "Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes" Photonics 9, no. 2: 84. https://doi.org/10.3390/photonics9020084
APA StyleShi, Y., Liu, W., Liu, S., Yang, T., Dong, Y., Sun, D., & Li, G. (2022). Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes. Photonics, 9(2), 84. https://doi.org/10.3390/photonics9020084