Short-Term Peripheral Contrast Reduction Affects Central Chromatic and Achromatic Contrast Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Apparatus
2.3. Stimuli
2.4. Study Protocol
2.5. Statistical Data Analysis
3. Results
3.1. Participant Data
3.2. Contrast Sensitivity
3.2.1. Spatial Frequency
3.2.2. Cone Type Specific Contrast Sensitivity
3.2.3. Level of Diffusion
3.2.4. Contrast Adaptation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Contrast sensitivity |
L-cones | Long-wavelength light sensitive cones |
M-cones | Middle-wavelength light sensitive cones |
S-cones | Short-wavelength light sensitive cones |
References
- Wolffsohn, J.S.; Flitcroft, D.I.; Gifford, K.L.; Jong, M.; Jones, L.; Klaver, C.C.; Logan, N.S.; Naidoo, K.; Resnikoff, S.; Sankaridurg, P.; et al. IMI–myopia control reports overview and introduction. Investig. Ophthalmol. Vis. Sci. 2019, 60, M1–M19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, J.B.; Ang, M.; Cho, P.; Guggenheim, J.A.; He, M.G.; Jong, M.; Logan, N.S.; Liu, M.; Morgan, I.; Ohno-Matsui, K.; et al. IMI prevention of myopia and its progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 6. [Google Scholar] [CrossRef] [PubMed]
- Jong, M.; Jonas, J.B.; Wolffsohn, J.S.; Berntsen, D.A.; Cho, P.; Clarkson-Townsend, D.; Flitcroft, D.I.; Gifford, K.L.; Haarman, A.E.; Pardue, M.T.; et al. IMI 2021 yearly digest. Investig. Ophthalmol. Vis. Sci. 2021, 62, 7. [Google Scholar] [CrossRef]
- Kerber, K.L.; Thorn, F.; Bex, P.J.; Vera-Diaz, F.A. Peripheral contrast sensitivity and attention in myopia. Vis. Res. 2016, 125, 49–54. [Google Scholar] [CrossRef]
- Gao, Y.; Webster, M.A.; Jiang, F. Dynamics of contrast adaptation in central and peripheral vision. J. Vis. 2019, 19, 23. [Google Scholar] [CrossRef]
- Greenlee, M.W.; Georgeson, M.A.; Magnussen, S.; Harris, J.P. The time course of adaptation to spatial contrast. Vis. Res. 1991, 31, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, T.S.; Bach, M. Contrast adaptation in retinal and cortical evoked potentials: No adaptation to low spatial frequencies. Vis. Neurosci. 2002, 19, 645. [Google Scholar] [CrossRef]
- Kraft, C.; Leube, A.; Ohlendorf, A.; Wahl, S. Contrast adaptation appears independent of the longitudinal chromatic aberration of the human eye. JOSA A 2019, 36, B77–B84. [Google Scholar] [CrossRef]
- McGonigle, C.; van der Linde, I.; Pardhan, S.; Engel, S.A.; Mallen, E.A.; Allen, P.M. Myopes experience greater contrast adaptation during reading. Vis. Res. 2016, 121, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ohlendorf, A.; Schaeffel, F. Contrast adaptation induced by defocus—A possible error signal for emmetropization? Vis. Res. 2009, 49, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa-Carpes, J.A.; Bueno, J.M.; Fernández, E.J. Visual Adaptation to Scattering in Myopes. Photonics 2021, 8, 274. [Google Scholar] [CrossRef]
- Aleman, A.C.; Wang, M.; Schaeffel, F. Reading and myopia: Contrast polarity matters. Sci. Rep. 2018, 8, 10840. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.J.; Buehren, T.; Iskander, D.R. Retinal image quality, reading and myopia. Vis. Res. 2006, 46, 196–215. [Google Scholar] [CrossRef] [Green Version]
- George, S.; Rosenfield, M. Blur adaptation and myopia. Optom. Vis. Sci. 2004, 81, 543–547. [Google Scholar] [CrossRef]
- SightGlass Vision, Inc. Control of Myopia Using Novel Spectacle Lens Designs (CYPRESS), 2018–2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03623074ClinicalTrials.gov (accessed on 2 July 2020).
- Rappon, J.; Neitz, J.; Neitz, M. Novel DOT Lenses from SightGlass Vision Show Great Promise to Fight Myopia. 2020. Available online: https://reviewofmm.com/novel-dot-lenses-from-sightglass-vision-show-great-promise-to-fight-myopia/ (accessed on 2 July 2020).
- Taylor, C.P.; Shepard, T.G.; Rucker, F.J.; Eskew, R.T. Sensitivity to S-cone stimuli and the development of myopia. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4622–4630. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Sekiguchi, N.; Brainard, D. Color, contrast sensitivity, and the cone mosaic. Proc. Natl. Acad. Sci. USA 1993, 90, 9770–9777. [Google Scholar] [CrossRef] [Green Version]
- Blakemore, C.; Campbell, F.W. Adaptation to spatial stimuli. J. Physiol. 1969, 200, 11P–13P. [Google Scholar]
- Foley, J.M.; Boynton, G.M. Forward pattern masking and adaptation: Effects of duration, interstimulus interval, contrast, and spatial and temporal frequency. Vis. Res. 1993, 33, 959–980. [Google Scholar] [CrossRef]
- Williams, D.; Wilson, H.; Cowan, J. Localized effects of spatial-frequency adaptation. JOSA 1982, 72, 878–887. [Google Scholar] [CrossRef]
- Teoh, S.C.; Collins, M.J.; Read, S.A. The short-term effect of diffuse and defocus blur on axial length and vision. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2698. [Google Scholar]
- Teoh, S.C.; Collins, M.J.; Read, S.A.; Pieterse, E. Axial length change with short-term exposure to visual stimuli with a limited range of spatial frequencies. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1340. [Google Scholar]
- Sharpe, C.; Tolhurst, D. Orientation and spatial frequency channels in peripheral vision. Vis. Res. 1973, 13, 2103–2112. [Google Scholar] [CrossRef]
- Seidemann, A.; Schaeffel, F. An evaluation of the lag of accommodation using photorefraction. Vis. Res. 2003, 43, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Brainard, D.H. The psychophysics toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiner, M.; Brainard, D.; Pelli, D. What’s new in Psychtoolbox-3? Perception 2007, 36, 1–16. [Google Scholar]
- Shen, Y.; Dai, W.; Richards, V.M. A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure. Behav. Res. Methods 2015, 47, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Estévez, O.; Spekreijse, H. The “silent substitution” method in visual research. Vis. Res. 1982, 22, 681–691. [Google Scholar] [CrossRef]
- Stockman, A.; Sharpe, L.T.; Fach, C. The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vis. Res. 1999, 39, 2901–2927. [Google Scholar] [CrossRef] [Green Version]
- Stockman, A.; Sharpe, L.T. The spectral sensitivities of the middle-and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis. Res. 2000, 40, 1711–1737. [Google Scholar] [CrossRef] [Green Version]
- Schilling, T.; Ohlendorf, A.; Leube, A.; Wahl, S. TuebingenCSTest—A useful method to assess the contrast sensitivity function. Biomed. Opt. Express 2017, 8, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D. Visual contrast sensitivity. Opt. Acta Int. J. Opt. 1977, 24, 107–129. [Google Scholar] [CrossRef]
- Pelli, D.G.; Bex, P. Measuring contrast sensitivity. Vis. Res. 2013, 90, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owsley, C. Contrast sensitivity. Ophthalmol. Clin. N. Am. 2003, 16, 171–177. [Google Scholar] [CrossRef]
- Stockman, A.; MacLeod, D.I.; Johnson, N.E. Spectral sensitivities of the human cones. JOSA A 1993, 10, 2491–2521. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; MacLeod, D.I.; Hayhoe, M.M. Foveal tritanopia. Vis. Res. 1981, 21, 1341–1356. [Google Scholar] [CrossRef]
- Williams, D.R.; MacLeod, D.I.; Hayhoe, M.M. Punctate sensitivity of the blue-sensitive mechanism. Vis. Res. 1981, 21, 1357–1375. [Google Scholar] [CrossRef]
- Kamar, S.; Howlett, M.H.; Kamermans, M. Silent-substitution stimuli silence the light responses of cones but not their output. J. Vis. 2019, 19, 14. [Google Scholar] [CrossRef]
- Pérez, G.M.; Archer, S.M.; Artal, P. Optical characterization of Bangerter foils. Investig. Ophthalmol. Vis. Sci. 2010, 51, 609–613. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, T.J. Analysis of intraocular straylight, especially in relation to age. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1995, 72, 52–59. [Google Scholar] [CrossRef]
- Perez, G.M.; Manzanera, S.; Artal, P. Impact of scattering and spherical aberration in contrast sensitivity. J. Vis. 2009, 9, 19.1–19.10. [Google Scholar] [CrossRef] [PubMed]
- Smith III, E.L.; Hung, L.F. Form-deprivation myopia in monkeys is a graded phenomenon. Vis. Res. 2000, 40, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Neitz, J.; Kuchenbecker, J.; Neitz, M. Ophthalmic Lenses for Treating Myopia. U.S. Patent 10571717, 25 February 2020. [Google Scholar]
- Diez, P.S.; Schaeffel, F.; Wahl, S.; Ohlendorf, A. Accommodation responses following contrast adaptation. Vis. Res. 2020, 170, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Diether, S.; Gekeler, F.; Schaeffel, F. Changes in contrast sensitivity induced by defocus and their possible relations to emmetropization in the chicken. Investig. Ophthalmol. Vis. Sci. 2001, 42, 3072–3079. [Google Scholar]
- Demb, J.B. Functional circuitry of visual adaptation in the retina. J. Physiol. 2008, 586, 4377–4384. [Google Scholar] [CrossRef]
- Maniglia, M.; Contemori, G.; Marini, E.; Battaglini, L. Contrast adaptation of flankers reduces collinear facilitation and inhibition. Vis. Res. 2022, 193, 107979. [Google Scholar] [CrossRef]
- Xing, J.; Heeger, D.J. Center-surround interactions in foveal and peripheral vision. Vis. Res. 2000, 40, 3065–3072. [Google Scholar] [CrossRef] [Green Version]
- Polat, U.; Sagi, D. Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vis. Res. 1993, 33, 993–999. [Google Scholar] [CrossRef]
- Cannon, M.W.; Fullenkamp, S.C. Spatial interactions in apparent contrast: Inhibitory effects among grating patterns of different spatial frequencies, spatial positions and orientations. Vis. Res. 1991, 31, 1985–1998. [Google Scholar] [CrossRef]
Control | 0.4 Bangerter Foil | 0.8 Bangerter Foil | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
T | T | T | T | T | T | T | T | T | ||
3 cpd | Achromatic | 1.60 ± 0.13 | 1.55 ± 0.23 | 1.58 ± 0.07 | 1.58 ± 0.28 | 1.59 ± 0.19 | 1.58 ± 0.11 | 1.62 ± 0.07 | 1.58 ± 0.11 | 1.60 ± 0.24 |
S-cone | 0.95 ± 0.11 | 0.95 ± 0.15 | 0.90 ± 0.19 | 0.92 ± 0.32 | 1.01 ± 0.32 | 0.96 ± 0.09 | 0.98 ± 0.37 | 0.92 ± 0.25 | 0.87 ± 0.28 | |
M-cone | 1.64 ± 0.30 | 1.67 ± 0.22 | 1.64 ± 0.27 | 1.78 ± 0.12 | 1.68 ± 0.30 | 1.66 ± 0.13 | 1.54 ± 0.51 | 1.67 ± 0.24 | 1.55 ± 0.36 | |
L-cone | 1.62 ± 0.19 | 1.62 ± 0.48 | 1.61 ± 0.15 | 1.68 ± 0.12 | 1.63 ± 0.16 | 1.49 ± 0.22 | 1.66 ± 0.24 | 1.59 ± 0.20 | 1.50 ± 0.31 | |
12 cpd | Achromatic | 1.06 ± 0.47 | 1.20 ± 0.22 | 0.94 ± 0.56 | 1.34 ± 0.40 | 1.14 ± 0.38 | 1.16 ± 0.71 | 0.84 ± 0.80 | 1.30 ± 0.53 | 0.94 ± 0.74 |
S-cone | 0.47 ± 0.36 | 0.51 ± 0.30 | 0.45 ± 0.45 | 0.51 ± 0.34 | 0.57 ± 0.35 | 0.43 ± 0.59 | 0.41 ± 0.45 | 0.44 ± 0.31 | 0.32 ± 0.46 | |
M-cone | 1.30 ± 0.30 | 1.32 ± 0.36 | 1.15 ± 0.61 | 1.31 ± 0.49 | 1.33 ± 0.46 | 1.16 ± 0.88 | 1.22 ± 1.14 | 1.09 ± 0.91 | 0.94 ± 0.77 | |
L-cone | 1.13 ± 0.22 | 1.04 ± 0.71 | 1.00 ± 0.96 | 1.26 ± 0.31 | 1.26 ± 0.76 | 0.96 ± 1.15 | 1.26 ± 0.67 | 1.21 ± 0.29 | 1.01 ± 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, A.; Leube, A.; Nabawi, N.; Sauer, Y.; Essig, P.; Breher, K.; Wahl, S. Short-Term Peripheral Contrast Reduction Affects Central Chromatic and Achromatic Contrast Sensitivity. Photonics 2022, 9, 123. https://doi.org/10.3390/photonics9030123
Neumann A, Leube A, Nabawi N, Sauer Y, Essig P, Breher K, Wahl S. Short-Term Peripheral Contrast Reduction Affects Central Chromatic and Achromatic Contrast Sensitivity. Photonics. 2022; 9(3):123. https://doi.org/10.3390/photonics9030123
Chicago/Turabian StyleNeumann, Antonia, Alexander Leube, Najma Nabawi, Yannick Sauer, Peter Essig, Katharina Breher, and Siegfried Wahl. 2022. "Short-Term Peripheral Contrast Reduction Affects Central Chromatic and Achromatic Contrast Sensitivity" Photonics 9, no. 3: 123. https://doi.org/10.3390/photonics9030123
APA StyleNeumann, A., Leube, A., Nabawi, N., Sauer, Y., Essig, P., Breher, K., & Wahl, S. (2022). Short-Term Peripheral Contrast Reduction Affects Central Chromatic and Achromatic Contrast Sensitivity. Photonics, 9(3), 123. https://doi.org/10.3390/photonics9030123