All-Optical Phase-Change Memory with Improved Performance by Plasmonic Effect
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Memory Performance
3.2. Crystallization and Amorphization Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 2021, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, J.; Youngblood, N.; Li, X.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, L.; Liu, J. Overview of Phase-Change Materials Based Photonic Devices. IEEE Access 2020, 8, 121211–121245. [Google Scholar] [CrossRef]
- Zheng, J.; Fang, Z.; Wu, C.; Zhu, S.; Xu, P.; Doylend, J.K.; Deshmukh, S.; Pop, E.; Dunham, S.; Li, M.; et al. Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater. Adv. Mater. 2020, 32, e2001218. [Google Scholar] [CrossRef]
- Ríos, C.; Zhang, Y.; Shalaginov, M.Y.; Deckoff-Jones, S.; Wang, H.; An, S.; Zhang, H.; Kang, M.; Richardson, K.A.; Roberts, C.; et al. Multi-Level Electro-Thermal Switching of Optical Phase-Change Materials Using Graphene. Adv. Photonics Res. 2021, 2, 2000034. [Google Scholar] [CrossRef]
- Taghinejad, H.; Abdollahramezani, S.; Eftekhar, A.A.; Fan, T.; Hosseinnia, A.H.; Hemmatyar, O.; Dorche, A.E.; Gallmon, A.; Adibi, A. ITO-Based Microheaters for Reversible Multi-Stage Switching of Phase-Change Materials: Towards Miniaturized Beyond-Binary Reconfigurable Integrated Photonics. Opt. Express 2020, 29, 20449–20462. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, H.; Krasnok, A.; Kiarashinejad, Y.; Zandehshahvar, M.; Alù, A.; Adibi, A. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 2020, 9, 1189–1241. [Google Scholar] [CrossRef]
- Zhu, M.; Song, W.; Konze, P.M.; Li, T.; Gault, B.; Chen, X.; Shen, J.; Lv, S.; Song, Z.; Wuttig, M.; et al. Direct atomic insight into the role of dopants in phase-change materials. Nat. Commun. 2019, 10, 3525. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Ríos, C.; Pernice, W.; Wright, C.; Bhaskaran, H.J.S.A. On-chip photonic synapse. Sci. Adv. 2017, 3, e1700160. [Google Scholar] [CrossRef] [Green Version]
- Ríos, C.; Youngblood, N.; Cheng, Z.; Gallo, M.L.; Pernice, W.; Wright, C.; Sebastian, A.; Bhaskaran, H.J.S.A. In-memory computing on a photonic platform. Sci. Adv. 2019, 5, eaau5759. [Google Scholar] [CrossRef] [Green Version]
- Farmakidis, N.; Youngblood, N.; Li, X.; Tan, J.; Swett, J.; Cheng, Z.; Wright, C.D.; Pernice, W.H.P.; Bhaskaran, H.J.S.A. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 2019, 5, eaaw2687. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Raghuwanshi, S.; Srinivas, T. Nanophotonic on-chip hybrid plasmonic electro-optic modulator with phase change materials. Phys. Lett. A 2019, 383, 3196–3199. [Google Scholar] [CrossRef]
- Gemo, E.; Carrillo, S.G.; De Galarreta, C.R.; Baldycheva, A.; Hayat, H.; Youngblood, N.; Bhaskaran, H.; Pernice, W.H.P.; Wright, C.D. Plasmonically-enhanced all-optical integrated phase-change memory. Opt. Express 2019, 27, 24724–24737. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Bouchemat, M. Optimization of Q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 2015, 90, 065504. [Google Scholar] [CrossRef]
- Kassa-Baghdouche, L.; Boumaza, T.; Bouchemat, M. Planar photonic crystal nanocavities with symmetric cladding layers for integrated optics. Opt. Eng. 2014, 53, 127107. [Google Scholar] [CrossRef]
- Chen, C.; Mohr, D.A.; Choi, H.-K.; Yoo, D.; Li, M.; Oh, S.-H. Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy. Nano Lett. 2018, 18, 7601–7608. [Google Scholar] [CrossRef]
- Shen, J.; Jia, S.; Shi, N.; Ge, Q.; Gotoh, T.; Lv, S.-L.; Liu, Q.; Dronskowski, R.; Elliott, S.R.; Song, Z.; et al. Elemental electrical switch enabling phase segregation-free operation. Science 2021, 374, 1390–1394. [Google Scholar] [CrossRef]
- Gemo, E.; Faneca, J.; Carrillo, S.G.-C.; Baldycheva, A.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D. A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices. J. Appl. Phys. 2021, 129, 110902. [Google Scholar] [CrossRef]
- Pile, D. Perspective on plasmonics. Nat. Photonics 2012, 6, 714–715. [Google Scholar] [CrossRef]
- Gemo, E.; García-Cuevas Carrillo, S.; Faneca, J.; Ruíz de Galarreta, C.; Hayat, H.; Youngblood, N.; Baldycheva, A.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; et al. Sub-wavelength plasmonic-enhanced phase-change memory. In Proceedings of the Photonic and Phononic Properties of Engineered Nanostructures X, San Francisco, CA, USA, 3–6 February 2020. [Google Scholar]
- Vandenbosch, G.; Ma, Z.J. Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy 2012, 1, 494–502. [Google Scholar] [CrossRef]
- Lu, L.; Dong, W.; Behera, J.K.; Chew, L.; Simpson, R.E. Inter-diffusion of plasmonic metals and phase change materials. J. Mater. Sci. 2018, 54, 2814–2823. [Google Scholar] [CrossRef] [Green Version]
- Gholipour, B.; Zhang, J.; MacDonald, K.F.; Hewak, D.W.; Zheludev, N.I. An All-Optical, Non-volatile, Bidirectional, Phase-Change Meta-Switch. Adv. Mater. 2013, 25, 3050–3054. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Rogers, E.T.F.; Gholipour, B.; Wang, C.-M.; Yuan, G.; Teng, J.; Zheludev, N.I. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 2015, 10, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Yalon, E.; Deshmukh, S.; Muñoz Rojo, M.; Lian, F.; Neumann, C.M.; Xiong, F.; Pop, E. Spatially Resolved Thermometry of Resistive Memory Devices. Sci. Rep. 2017, 7, 15360. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Tang, Z.; Huang, Z.; Wang, J. Transient Thermoreflectance Measurement of Thermal Conductivity of Nanoscale Silicon Nitride Thin Films. In Proceedings of the ASME 2007 5th International Conference on Nanochannels, Microchannels, and Minichannels, Puebla, Mexico, 18–20 June 2007. [Google Scholar]
- Cho, J.; Chu, K.K.; Chao, P.C.; McGray, C.; Asheghi, M.; Goodson, K.E. Thermal conduction normal to thin silicon nitride films on diamond and GaN. In Proceedings of the Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 27–30 May 2014; pp. 1186–1191. [Google Scholar]
- Stegmaier, M.; Ríos, C.; Bhaskaran, H.; Pernice, W.H. Thermo-optical Effect in Phase-Change Nanophotonics. ACS Photonics 2016, 3, 828–835. [Google Scholar] [CrossRef]
- Carrillo, S.G.; Nash, G.R.; Hayat, H.; Cryan, M.J.; Klemm, M.; Bhaskaran, H.; Wright, C.D. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt. Express 2016, 24, 13563–13573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, C.D.; Wang, L.; Shah, P.; Aziz, M.M.; Varesi, E.; Bez, R.; Moroni, M.; Cazzaniga, F. The Design of Rewritable Ultrahigh Density Scanning-Probe Phase-Change Memories. IEEE Trans. Nanotechnol. 2011, 10, 900–912. [Google Scholar] [CrossRef]
- Arbabi, A.A.; Goddard, L.L. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances. Opt. Lett. 2013, 38 19, 3878–3881. [Google Scholar] [CrossRef]
- Palankovski, V.; Quay, R. Analysis and Simulation of Heterostructure Devices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Takeyama, M.B.; Sato, M.; Nakata, Y.; Kobayashi, Y.; Nakamura, T.; Noya, A. Characterization of silicon nitride thin films deposited by reactive sputtering and plasma-enhanced CVD at low temperatures. Jpn. J. Appl. Phys. 2014, 53, 05GE01. [Google Scholar] [CrossRef]
- Kischkat, J.; Peters, S.; Gruska, B.; Semtsiv, M.; Chashnikova, M.; Klinkmueller, M.; Fedosenko, O.; Machulik, S.; Aleksandrova, A.; Monastyrskyi, G.; et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 2012, 51, 6789–6798. [Google Scholar] [CrossRef]
- Udrea, F.; Gardner, J.W.; Setiadi, D.; Covington, J.A.; Dogaru, T.; Lu, C.C.; Milne, W.I. Design and simulations of SOI CMOS micro-hotplate gas sensors. Sens. Actuators B Chem. 2001, 78, 180–190. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Furukawa, G.T.; Reilly, M.L.; Gallagher, J.S. Critical Analysis of Heat—Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium, and Platinum from 0 to 300K. A Survey of the Literature Data on Osmium. J. Phys. Chem. Ref. Data 1974, 3, 163–209. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, L.; Xu, S.; Lu, M.; Wang, X. Temperature dependence of electrical and thermal conduction in single silver nanowire. Sci. Rep. 2015, 5, 10718. [Google Scholar] [CrossRef] [Green Version]
- Lovell, S.; Rollinson, E. Density of Thin Films of Vacuum Evaporated Metals. Nature 1968, 218, 1179–1180. [Google Scholar] [CrossRef]
- Prodan, E.; Radloff, C.; Halas, N.J.; Nordlander, P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419–422. [Google Scholar] [CrossRef]
- Zhang, R. A First Principles Approach to Understand Plasmonic Properties in Physical Systems. Ph.D. Thesis, Rice University, Houston, TX, USA, 2018. [Google Scholar]
- Zhang, Y.-X.; Zhang, Y.; Mølmer, K. Surface Plasmon Launching by Polariton Superradiance. ACS Photonics 2018, 6, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Von Keitz, J.; Feldmann, J.; Gruhler, N.; Ríos, C.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Reconfigurable Nanophotonic Cavities with Nonvolatile Response. ACS Photonics 2018, 5, 4644–4649. [Google Scholar] [CrossRef] [Green Version]
- Castro-Lopez, M.; de Sousa, N.; Garcia-Martin, A.; Gardes, F.Y.; Sapienza, R. Scattering of a plasmonic nanoantenna embedded in a silicon waveguide. Opt. Express 2015, 23, 28108–28118. [Google Scholar] [CrossRef] [Green Version]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 2018, 6, 1–6. [Google Scholar] [CrossRef]
n | Cp (J/K) | K (W/mK) | Ρ (Kg/m3) | |
---|---|---|---|---|
aGST | 3.94 + 0.045i * [28] | 210 [29] | 0.58 [29] | 6150 [30] |
cGST | 6.11 + 0.83i * [28] | 0.2 [29] | 5780 [30] | |
Si3N4 | 1.98 * [31] | 774 * [32] | 18.4 * [32] | 2750 [33] |
SiO2 | 1.44 [34] | 697 * [32] | 1.37 * [32] | 2270 [35] |
Ag | 0.145 + 11.445i [36] | 235 [37] | 145 [38] | 10,820 [39] |
Transmission | Reflection | Signal Contrast (%) | Insertion Loss (dB) | ||
---|---|---|---|---|---|
Non-embedded | aGST | 0.766 | 0.006 | 13.7 | 2.3 |
cGST | 0.888 | 0.003 | 1.0 | ||
Half-embedded | aGST | 0.779 | 0.005 | 9.6 | 2.1 |
cGST | 0.862 | 0.004 | 1.3 | ||
Full-embedded | aGST | 0.752 | 0.007 | 6.1 | 1.9 |
cGST | 0.829 | 0.006 | 1.6 |
Configuration | Ref | GST Cell Size (um) | Shortest Write/Erase Pulse [ns] | Lowest Pulse Energy [pJ] | Maximum Contrast [%] | Insertion Loss [dB] |
---|---|---|---|---|---|---|
Ridge waveguide | [45] | 0.25 × 1 × 0.01 | Write: 10 Erase: n/a | n/a | 0.67 | 7.14 |
Ridge waveguide | [46] | 4 × 1.3 × 0.01 | Write: 25 Erase: 125 | Write: 68 Erase: 680 | 28 | n/a |
Plasmonic nanoantenna | [13] | 0.06 × 0.04 × 0.03 | Write: 2 Erase: 16.5 | Write: 2 Erase: 15 | 12.8 | 4.8 |
Plasmonic nanoantenna | This work | 0.05 × 0.09 × 0.03 | Write: 1 Erase: 11 | Write: 20 Erase: 38 | 15.8 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Lu, Y.; Miao, L.; Zhang, Y. All-Optical Phase-Change Memory with Improved Performance by Plasmonic Effect. Photonics 2022, 9, 132. https://doi.org/10.3390/photonics9030132
Sun W, Lu Y, Miao L, Zhang Y. All-Optical Phase-Change Memory with Improved Performance by Plasmonic Effect. Photonics. 2022; 9(3):132. https://doi.org/10.3390/photonics9030132
Chicago/Turabian StyleSun, Wei, Yegang Lu, Libo Miao, and Yu Zhang. 2022. "All-Optical Phase-Change Memory with Improved Performance by Plasmonic Effect" Photonics 9, no. 3: 132. https://doi.org/10.3390/photonics9030132
APA StyleSun, W., Lu, Y., Miao, L., & Zhang, Y. (2022). All-Optical Phase-Change Memory with Improved Performance by Plasmonic Effect. Photonics, 9(3), 132. https://doi.org/10.3390/photonics9030132