Statistically Correlating Laser-Induced Damage Performance with Photothermal Absorption for Fused Silica Optics in a High-Power Laser System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Post-Treatments
2.3. Weak Absorption Measurement
2.4. Laser-Induced Damage Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moses, E.I.; Campbell, J.H.; Stolz, C.J.; Wuest, C.R. The National Ignition Facility: The world’s largest optics and laser system. Proc. SPIE 2003, 5001, 1–15. [Google Scholar]
- Fleurot, N.; Cavailler, C.; Bourgade, J.L. The Laser Mégajoule (LMJ) Project dedicated to inertial confinement fusion: Development and construction status. Fusion Eng. Des. 2005, 74, 147–154. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, X.; Wei, X.; Jing, F.; Sui, Z.; Zheng, K.; Yuan, X.; Jiang, X.; Su, J.; Zhou, H.; et al. Status of the SG-III solid-state laser facility. J. Phys. Conf. Ser. 2008, 112, 032009. [Google Scholar]
- Menapace, J.; Penetrante, B.; Golini, D.; Slomba, A.; Miller, P.; Parham, T.; Nichols, M.; Peterson, J. Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused-silica optics. Proc. SPIE 2002, 4679, 56–68. [Google Scholar]
- Neauport, J.; Lamaignere, L.; Bercegol, H.; Pilon, F.; Birolleau, J.C. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm. Opt. Express 2005, 13, 10163–10171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bude, J.; Miller, P.; Baxamusa, S.; Shen, N.; Laurence, T.; Steele, W.; Suratwala, T.; Wong, L.; Carr, W.; Cross, D.; et al. High fluence laser damage precursors and their mitigation in fused silica. Opt. Express 2014, 22, 5839–5851. [Google Scholar] [CrossRef]
- Miller, P.E.; Suratwala, T.I.; Wong, L.L.; Feit, M.D.; Menapace, J.A.; Davis, P.J.; Steele, R.A. The distribution of subsurface damage in fused silica. Proc. SPIE 2005, 5991, 599101. [Google Scholar]
- Suratwala, T.; Wong, L.; Miller, P.; Feit, M.D.; Menapace, J.; Steele, R.; Davis, P.; Walmer, D. Sub-surface mechanical damage distributions during grinding of fused silica. J. Non Cryst. Solids 2006, 352, 5601–5617. [Google Scholar] [CrossRef] [Green Version]
- Neauport, J.; Ambard, C.; Cormont, P.; Darbois, N.; Destribats, J.; Luitot, C.; Rondeau, O. Subsurface damage measurement of ground fused silica parts by HF etching techniques. Opt. Express 2009, 17, 20448–20456. [Google Scholar] [CrossRef]
- Suratwala, T.I.; Miller, P.E.; Bude, J.D.; Steele, W.A.; Shen, N.; Monticelli, M.V.; Feit, M.D.; Laurence, T.A.; Norton, M.A.; Carr, C.W.; et al. HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces. J. Am. Ceram. Soc. 2011, 94, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Huang, J.; Liu, H.; Geng, F.; Sun, L.; Jiang, X.; Wu, W.; Qiao, L.; Zu, X.; Zheng, W. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics. Sci. Rep. 2016, 6, 31111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, F.; Tian, Y.; Peng, X.; Dai, Y. Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics. Appl. Opt. 2014, 53, 598–604. [Google Scholar] [CrossRef] [PubMed]
- DeMange, P.; Carr, C.W.; Radousky, H.B.; Demos, S.G. System for evaluation of laser-induced damage performance of optical materials for large aperture lasers. Rev. Sci. Instrum. 2004, 75, 3298–3301. [Google Scholar] [CrossRef]
- Lamaignère, L.; Balas, M.; Courchinoux, R.; Donval, T.; Poncetta, J.C.; Reyné, S.; Bertussi, B.; Bercegol, H. Parametric study of laser-induced surface damage density measurements: Toward reproducibility. J. Appl. Phys. 2010, 107, 023105. [Google Scholar] [CrossRef]
- Demos, S.G.; Negres, R.A. Time-resolved imaging of material response during laser-induced bulk damage in SiO2. Proc. SPIE 2008, 7132, 71320Q. [Google Scholar]
- Bercegol, H.; Grua, P. Fracture related initiation and growth of surface laser damage in fused silica. Proc. SPIE 2008, 7132, 71321B. [Google Scholar]
- Fieberg, S.; Waasem, N.; Kühnemann, F.; Buse, K. Sensitive absorption measurements in bulk material and coatings using a photothermal and a photoacoustic spectrometer. Proc. SPIE 2014, 8964, 896410. [Google Scholar]
- Alexandrovski, A.; Fejer, M.; Markosian, A.; Route, R. Photothermal common-path interferometry (PCI): New developments. Proc. SPIE 2009, 7193, 71930D. [Google Scholar]
- ISO 11551:2003; Optics and Optical Instruments—Lasers and Laser-Related Equipment—Test Method for Absorptance of Optical Laser Components. International Standard. International Organization for Standardization: Geneva, Switzerland, 2003.
- Waasem, N.; Fieberg, S.; Hauser, J.; Gomes, G.; Haertle, D.; Kuhnemann, F.; Buse, K. Photoacoustic absorption spectrometer for highly transparent dielectrics with parts-per-million sensitivity. Rev. Sci. Instrum. 2013, 84, 023109. [Google Scholar] [CrossRef]
- Leidinger, M.; Fieberg, S.; Waasem, N.; Kuhnemann, F.; Buse, K.; Breunig, I. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. Opt. Express 2015, 23, 21690–21705. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, F.; Liu, H.; Geng, F.; Jiang, X.; Sun, L.; Ye, X.; Li, Q.; Wu, W.; Zheng, W.; et al. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics. Sci. Rep. 2017, 7, 16239. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, F.; Huang, J.; Meng, J.; Ma, Y.; Lian, Y.; Sun, L.; Ye, X.; Geng, F.; Jiang, X.; et al. Experimental study of 355 nm laser damage ignited by Fe and Ce impurities on fused silica surface. Opt. Mater. 2019, 95, 109231. [Google Scholar]
- Yan, C.; Liu, B.; Li, X.; Liu, C.; Ju, X. Photothermal spectroscopy study of fused silica irradiated by a 355 nm wavelength and 68 ns pulse duration laser. Opt. Mater. Express 2019, 9, 3439–3451. [Google Scholar] [CrossRef]
- Zhong, Y.; Dai, Y.; Shi, F.; Song, C.; Tian, Y.; Lin, Z.; Zhang, W.; Shen, Y. Effects of Ion Beam Etching on the Nanoscale Damage Precursor Evolution of Fused Silica. Materials 2020, 13, 1294. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Shi, F.; Zhou, L.; Dai, Y.; Peng, X.; Liao, W. Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica. Opt. Express 2017, 25, 29260–29271. [Google Scholar] [CrossRef]
- Sun, L.; Huang, J.; Shao, T.; Ye, X.; Li, Q.; Jiang, X.; Wu, W.; Yang, L.; Zheng, W. Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics. Opt. Express 2018, 26, 18006–18018. [Google Scholar] [CrossRef]
- Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 1996, 53, 1749–1761. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Huang, J.; Wang, F.; Zhou, X.; Ye, X.; Zhou, X.; Sun, L.; Jiang, X.; Sui, Z.; Zheng, W. Subsurface defects of fused silica optics and laser induced damage at 351 nm. Opt. Express 2013, 21, 12204–12217. [Google Scholar]
Sample | Post-Treatment | Roughness (nm) |
---|---|---|
A1 | Original | 0.81 |
A2 | DCE 1 μm | 0.68 |
A3 | DCE 10 μm | 1.15 |
B | MRF 1 μm | 1.19 |
C | MRF 2 μm | 1.11 |
D | MRF 5 μm | 1.17 |
Sample | Maximum (ppm) | Average (ppm) | Defect Density (mm−2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
>1 ppm | >1.5 ppm | >2 ppm | >3 ppm | >4 ppm | >5 ppm | >7 ppm | >10 ppm | >15 ppm | |||
A1 | 41.9 | 1.219 | 191.89 | 55.70 | 17.15 | 8.78 | 6.93 | 5.81 | 4.33 | 3.19 | 2.04 |
A2 | 27.3 | 0.862 | 134.70 | 30.74 | 3.85 | 1.15 | 0.63 | 0.48 | 0.33 | 0.33 | 0.15 |
A3 | 11.1 | 0.859 | 136.85 | 26.37 | 3.22 | 0.44 | 0.15 | 0.07 | 0.04 | 0.04 | 0.00 |
B | 37.7 | 1.673 | 235.33 | 105.48 | 41.70 | 22.30 | 18.96 | 16.78 | 13.89 | 9.89 | 5.48 |
C | 19.1 | 2.155 | 349.67 | 269.93 | 182.93 | 77.70 | 32.70 | 14.52 | 3.52 | 0.482 | 0.11 |
D | 259.0 | 5.372 | 391.44 | 370.33 | 345.74 | 276.56 | 183.22 | 127.70 | 75.19 | 32.89 | 15.96 |
Sample | Damage Density (cm−2) |
---|---|
A1 (original) | 2.0941 |
A2 (DCE 1 μm) | 0.0281 |
A3 (DCE 10 μm) | 0.0134 |
B (MRF 1 μm) | 7.7597 |
C (MRF 2 μm) | 49.8306 |
D (MRF 5 μm) | 91.8621 |
Spearman Corr. | Sig. | ||
---|---|---|---|
Maximum | −0.52381 | 0.18272 | |
Average | −0.92857 | 0.00086 | |
Absorption level of the defect | >1.0 ppm | −0.85714 | 0.00653 |
>1.5 ppm | −0.92857 | 0.00086 | |
>2.0 ppm | −0.97619 | 0.00003 | |
>3.0 ppm | −0.90476 | 0.00201 | |
>4.0 ppm | −0.90476 | 0.00201 | |
>5.0 ppm | −0.85714 | 0.00653 | |
>7.0 ppm | −0.76190 | 0.02800 | |
>10.0 ppm | −0.76190 | 0.02800 | |
>15.0 ppm | −0.64286 | 0.08556 |
Spearman Corr. | Sig. | ||
---|---|---|---|
Maximum | 0.42857 | 0.28940 | |
Average | 0.88095 | 0.00385 | |
Absorption level of the defect | >1.0 ppm | 0.78571 | 0.02082 |
>1.5 ppm | 0.88095 | 0.00385 | |
>2.0 ppm | 0.95238 | 0.00026 | |
>3.0 ppm | 0.83333 | 0.01018 | |
>4.0 ppm | 0.83333 | 0.01018 | |
>5.0 ppm | 0.78571 | 0.02082 | |
>7.0 ppm | 0.66667 | 0.07099 | |
>10.0 ppm | 0.66667 | 0.07099 | |
>15.0 ppm | 0.54762 | 0.16002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Sun, L.; Shao, T.; Liu, H.; Huang, J.; Ye, X.; Wang, F.; Yang, L.; Zheng, W. Statistically Correlating Laser-Induced Damage Performance with Photothermal Absorption for Fused Silica Optics in a High-Power Laser System. Photonics 2022, 9, 137. https://doi.org/10.3390/photonics9030137
Shi Z, Sun L, Shao T, Liu H, Huang J, Ye X, Wang F, Yang L, Zheng W. Statistically Correlating Laser-Induced Damage Performance with Photothermal Absorption for Fused Silica Optics in a High-Power Laser System. Photonics. 2022; 9(3):137. https://doi.org/10.3390/photonics9030137
Chicago/Turabian StyleShi, Zhaohua, Laixi Sun, Ting Shao, Hongjie Liu, Jin Huang, Xin Ye, Fengrui Wang, Liming Yang, and Wanguo Zheng. 2022. "Statistically Correlating Laser-Induced Damage Performance with Photothermal Absorption for Fused Silica Optics in a High-Power Laser System" Photonics 9, no. 3: 137. https://doi.org/10.3390/photonics9030137
APA StyleShi, Z., Sun, L., Shao, T., Liu, H., Huang, J., Ye, X., Wang, F., Yang, L., & Zheng, W. (2022). Statistically Correlating Laser-Induced Damage Performance with Photothermal Absorption for Fused Silica Optics in a High-Power Laser System. Photonics, 9(3), 137. https://doi.org/10.3390/photonics9030137