Multi-Attack Detection: General Defense Strategy Based on Neural Networks for CV-QKD
Abstract
:1. Introduction
2. Detection and Classification of Multi-Attack
2.1. Preparation of Multi-Attack Data Set
2.2. Feature Extraction
2.3. Multi-Label Neural Network Attack Detection Model
2.3.1. Multi-Label Neural Network Framework
2.3.2. The BR-NN Model
2.3.3. The LP-NN Model
2.4. Detection of Unknown Attacks
3. Performance
3.1. Implementation Details and Comparison with Existing Scheme
3.2. Multi-Attack Detection Performance of the Model
3.3. Multi-Attack Detection for Unknown Attacks
3.4. Security Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Mean and Variance under the Unattacked State
Appendix B. Traditional Attack Detection
Appendix C. Implementation Details and Attack Description
References
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dusek, M.; Lutkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef] [Green Version]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.; Ralph, T.; Shapiro, J.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2011, 84, 621–669. [Google Scholar] [CrossRef]
- Shen, Y.; Xiang, P.; Yang, J.; Guo, H. Continuous-variable quantum key distribution with Gaussian source noise. Phys. Rev. A 2011, 83, 10017–10028. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.M.; Qi, B.; Zhu, W.; Qian, L.; Lo, H.K.; Youn, S.H.; Lvovsky, A.I.; Tian, L. A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution. New J. Phys. 2010, 13, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Fang, J.; Wang, C.; Huang, P.; Zeng, G.H. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution. Chin. Phys. Lett. 2013, 30, 114209. [Google Scholar] [CrossRef]
- Lodewyck, J.; Debuisschert, T.; Tualle-Brouri, R.; Grangier, P. Controlling excess noise in fiber optics continuous variables quantum key distribution. Phys. Rev. A 2005, 72, 762–776. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121–3124. [Google Scholar] [CrossRef]
- Grosshans, F.; Grangier, P. Continuous Variable Quantum Cryptography Using Coherent States. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leverrier, A.; Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 2009, 102, 180504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leverrier, A.; Grangier, P. Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 2011, 83, 42312. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Huang, P.; Lin, D.; Zeng, G. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 2016, 6, 19201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosshans, F.; Van Assche, G.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Leverrier, A. Composable Security Proof for Continuous-Variable Quantum Key Distribution with Coherent States. Phys. Rev. Lett. 2015, 114, 070501. [Google Scholar] [CrossRef] [Green Version]
- Jouguet, P.; Kunz-Jacques, S.; Diamanti, E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 2013, 87, 062313. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.C.; Sun, S.H.; Jiang, M.S.; Liang, L.M. Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 2013, 88, 022339. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Kumar, R.; Alleaume, R. Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 2016, 94, 012325. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Kumar, R.; Makarov, V.; Alleaume, R. Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 2018, 98, 012312. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.C.; Sun, S.H.; Jiang, M.S.; Liang, L.M. Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 2013, 87, 052309. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Weedbrook, C.; Yin, Z.; Wang, S.; Li, H.; Chen, W.; Guo, G.; Han, Z. Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 2013, 87, 062329. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Wang, Y.; Huang, D. Wavelength attack recognition based on machine learning optical spectrum analysis for the practical continuous-variable quantum key distribution system. J. Opt. Soc. Am. B 2020, 37, 1689–1697. [Google Scholar] [CrossRef]
- Liu, W.; Peng, J.; Huang, P.; Huang, D.; Zeng, G. Monitoring of continuous-variable quantum key distribution system in real environment. Opt. Express 2017, 25, 19429–19443. [Google Scholar] [CrossRef]
- Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International Conference on Neural Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; Volume 3, pp. 1480–1483. [Google Scholar]
- Wu, Q.; Zhou, D.X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 2006, 8, 99–119. [Google Scholar]
- Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, Y.; Huang, W.; Qin, H.; Huang, D.; Guo, Y. Hidden-Markov-model-based calibration-attack recognition for continuous-variable quantum key distribution. Phys. Rev. A 2020, 101, 062320. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, W.; Zhong, H.; Wang, Y.; Qin, H.; Guo, Y.; Huang, D. Detecting quantum attacks: A machine learning based defense strategy for practical continuous-variable quantum key distribution. New J. Phys. 2020, 22, 083073. [Google Scholar] [CrossRef]
- Huang, D.; Liu, S.; Zhang, L. Secure Continuous-Variable Quantum Key Distribution with Machine Learning. Photonics 2021, 8, 511. [Google Scholar] [CrossRef]
- Huang, J.Z.; Kunz-Jacques, S.; Jouguet, P.; Weedbrook, C.; Yin, Z.Q.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Quantum Hacking on Quantum Key Distribution using Homodyne Detection. Phys. Rev. A 2014, 89, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Chen, W.; Wu, X.; Chen, P.; Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Zhang, M.L.; Zhou, Z.H. A Review on Multi-Label Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819–1837. [Google Scholar] [CrossRef]
- Gibaja, E.; Ventura, S. A Tutorial on Multilabel Learning. ACM Comput. Surv. 2015, 47, 1–38. [Google Scholar] [CrossRef]
- AlEroud, A.; Karabatis, G. Detecting Unknown Attacks Using Context Similarity. In Information Fusion for Cyber-Security Analytics; Springer: Berlin, Germany, 2017; pp. 53–75. [Google Scholar]
- Song, J.; Takakura, H.; Okabe, Y.; Kwon, Y. Unsupervised anomaly detection based on clustering and multiple one-class SVM. IEICE Trans. Commun. 2009, 92, 1981–1990. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv 2016, arXiv:1610.02136. [Google Scholar]
- Lange, S.; Riedmiller, M. Deep auto-encoder neural networks in reinforcement learning. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Ravanbakhsh, M.; Nabi, M.; Sangineto, E.; Marcenaro, L.; Regazzoni, C.; Sebe, N. Abnormal event detection in videos using generative adversarial nets. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1577–1581. [Google Scholar]
- Steinhardt, J.; Koh, P.W.; Liang, P. Certified defenses for data poisoning attacks. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Monticello, IL, USA, 22–24 September 2016; pp. 341–346. [Google Scholar]
- Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.; Wongrassamee, V.; Lupu, E.C.; Roli, F. Towards poisoning of deep learning algorithms with back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 27–38. [Google Scholar]
- Xiao, Q.; Chen, Y.; Shen, C.; Chen, Y.; Li, K. Seeing is not believing: Camouflage attacks on image scaling algorithms. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019; pp. 443–460. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany, 21–24 March 2016; pp. 372–387. [Google Scholar]
- Cretu, G.F.; Stavrou, A.; Locasto, M.E.; Stolfo, S.J.; Keromytis, A.D. Casting out demons: Sanitizing training data for anomaly sensors. In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–22 May 2008; pp. 81–95. [Google Scholar]
- Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.; Li, B. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 19–35. [Google Scholar]
- Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236. [Google Scholar]
- Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M.P. Sok: Security and privacy in machine learning. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018; pp. 399–414. [Google Scholar]
- Xu, W.; Evans, D.; Qi, Y. Feature squeezing: Detecting adversarial examples in deep neural networks. arXiv 2017, arXiv:1704.01155. [Google Scholar]
- Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; Jana, S. Certified robustness to adversarial examples with differential privacy. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 656–672. [Google Scholar]
- Raghunathan, A.; Steinhardt, J.; Liang, P. Certified defenses against adversarial examples. arXiv 2018, arXiv:1801.09344. [Google Scholar]
- Wong, E.; Kolter, Z. Provable defenses against adversarial examples via the convex outer adversarial polytope. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5286–5295. [Google Scholar]
- Xiao, C.; Li, B.; Zhu, J.Y.; He, W.; Liu, M.; Song, D. Generating adversarial examples with adversarial networks. arXiv 2018, arXiv:1801.02610. [Google Scholar]
Feature | ||||
---|---|---|---|---|
CA | - | ✓ | - | |
LOIA | - | ✓ | k | |
SA | ✓ | ✓ | - | - |
CA&LOIA | - | ✓ | k | |
CA&SA | ✓ | ✓ | - | |
LOIA&SA | ✓ | ✓ | k | |
CA&LOIA&SA | ✓ | ✓ | k |
Output | Sigmoid1 | Sigmoid2 | Sigmoid3 | Sigmoid4 |
---|---|---|---|---|
Unattacked State | 1 | 0 | 0 | 0 |
CA [17] | 0 | 1 | 0 | 0 |
LOIA [18] | 0 | 0 | 1 | 0 |
SA [19] | 0 | 0 | 0 | 1 |
CA&LOIA | 0 | 1 | 1 | 0 |
CA&SA | 0 | 1 | 0 | 1 |
LOIA&SA | 0 | 0 | 1 | 1 |
CA&LOIA&SA | 0 | 1 | 1 | 1 |
Model | CA-LOIA | CA-SA | LOIA-SA | CA-LOIA-SA |
---|---|---|---|---|
BR-NN | ✓ | ✓ | ✓ | ✓ |
LP-NN | ✓ | ✓ | ✓ | ✓ |
ANN-based [29] | LOIA | SA | SA | LOIA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Huang, D. Multi-Attack Detection: General Defense Strategy Based on Neural Networks for CV-QKD. Photonics 2022, 9, 177. https://doi.org/10.3390/photonics9030177
Du H, Huang D. Multi-Attack Detection: General Defense Strategy Based on Neural Networks for CV-QKD. Photonics. 2022; 9(3):177. https://doi.org/10.3390/photonics9030177
Chicago/Turabian StyleDu, Hongwei, and Duan Huang. 2022. "Multi-Attack Detection: General Defense Strategy Based on Neural Networks for CV-QKD" Photonics 9, no. 3: 177. https://doi.org/10.3390/photonics9030177
APA StyleDu, H., & Huang, D. (2022). Multi-Attack Detection: General Defense Strategy Based on Neural Networks for CV-QKD. Photonics, 9(3), 177. https://doi.org/10.3390/photonics9030177