Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect in Photonic Crystal Containing Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Angle-Sensitive Absorption Based on Light Slowing Effect at Band Edge in Traditional All-Dielectric 1-D PC
3. Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect at Angle-Insensitive Band Edge in 1-D PCCH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomić, S.; Jones, T.S.; Harrison, N.M. Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design. Appl. Phys. Lett. 2008, 93, 263105. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lu, J.; Gupta, P.; Qiu, M. Engineering optical absorption in graphene and other 2D materials: Advances and applications. Adv. Opt. Mater. 2019, 7, 1900595. [Google Scholar] [CrossRef]
- Li, Y.; Poon, A.W. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector. Opt. Express 2015, 23, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Yu, P.; Zhu, J.; Li, C.; Xu, H.; Zou, J.; Wu, C.; Wen, Q.; Ji, H.; Liu, T.; et al. An ultrathin MoSe2 photodetector with near-perfect absorption. Nanotechnology 2020, 31, 225201. [Google Scholar] [CrossRef]
- Xu, K.; Li, H.; Liu, Y.; Wang, Y.; Tian, J.; Wang, L.; Du, J.; He, Z.; Song, Q. Optical fiber humidity sensor based on water absorption peak near 2-μm waveband. IEEE Photonics J. 2019, 11, 7101308. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Y.; Zhang, Z.; Zhu, Z.; Liu, K.; Zhang, J.; Xu, W.; Yuan, X.; Guo, C. High-resolution graphene angle sensor based on ultra-narrowband optical perfect absorption. Opt. Express 2021, 29, 41206–41212. [Google Scholar] [CrossRef]
- Ito, K.; Saheki, T.; Murakami, Y.; Taniguchi, I.; Kikuchi, M.; Unosawa, Y. A novel gas analyzer for SO2, NO and NO2 in the stack effluent. Jpn. J. Appl. Phys. 1975, 14, 131. [Google Scholar] [CrossRef]
- Konopelko, L.A.; Tyurikova, E.P.; Snytko, Y.N. Investigation of spectral characteristics of an optical-absorption gas analyzer for monitoring freons in the air. Opt. Spectrosc. 2020, 128, 678–685. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic clock at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Fung, K.H.; Xu, J.; Ma, H.; Jin, Y.; He, S.; Fang, N.X. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano. Lett. 2012, 12, 1443–1447. [Google Scholar] [CrossRef] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhai, X.; Huang, Y.; Liu, J.; Wang, L.; Wen, S. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt. Lett. 2017, 42, 3052–3055. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Luo, H.; Li, Q.; Pei, X.; Du, K.; Qiu, M. Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures. Laser Photonics Rev. 2018, 12, 1800076. [Google Scholar] [CrossRef]
- Vyunishev, A.M.; Bikbaev, R.G.; Svyakhovskiy, S.E.; Timofeev, I.V.; Pankin, P.S.; Evlashin, S.A.; Vetrov, S.Y.; Myslivets, S.A.; Arkhipkin, V.G. Broadband Tamm plasmon polariton. J. Opt. Soc. Am. B 2019, 36, 2299–2305. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, Y.; Zhou, Y.; Huang, X.; Yang, G.; Zhu, J. Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene. Opt. Express 2020, 28, 31524–31534. [Google Scholar] [CrossRef] [PubMed]
- Baqir, M.A. Conductive metal-oxide-based tunable, wideband, and wide-angle metamaterial absorbers operating in the near-infrared and short-wavelength infrared regions. Appl. Opt. 2020, 59, 10912–10919. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Li, Q.; Belov, P.A.; Sinha, R.K.; Qian, W.; Qiu, M. High-Q all-dielectric metasurface: Super and suppressed optical absorption. ACS Photonics 2020, 7, 1436–1443. [Google Scholar] [CrossRef]
- Guan, J.; Xia, S.; Zhang, Z.; Wu, J.; Meng, H.; Yue, J.; Zhai, X.; Wang, L.; Wen, S. Two switchable plasmonically induced transparency effects in a system with distinct graphene resonators. Nanoscale Res. Lett. 2020, 15, 142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, Z.; Cao, Y.; Zhang, H. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun. 2015, 338, 168–173. [Google Scholar] [CrossRef]
- Lee, J.; Min, K.; Park, Y.; Cho, K.; Jeon, H. Photonic crystal phosphors integrated on a blue LED chip for efficient white light generation. Adv. Mater. 2018, 30, 1703506. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Kato, M.; Kuramochi, E.; Lee, C.; Notomi, M. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides. Opt. Express 2007, 15, 3543–3549. [Google Scholar] [CrossRef] [PubMed]
- Goldring, D.; Levy, U.; Dotan, I.E.; Tsukernik, A.; Oksman, M.; Rubin, I.; David, Y.; Mendlovic, D. Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal. Opt. Express 2008, 16, 5585–5595. [Google Scholar] [CrossRef] [PubMed]
- Torrijos-Morán, L.; Griol, A.; García-Rupérez, J. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Light Sci. Appl. 2021, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wu, X.; Xiao, S.; Liu, G.; Li, H. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Opt. Express 2021, 29, 23976–23987. [Google Scholar] [CrossRef]
- Wang, Z.; Ou, Y.; Wang, S.; Meng, Y.; Wang, Z.; Zhai, X.; Wang, L.; Xia, S. Ultrahigh-Q tunable terahertz absorber based on bulk Dirac semimetal with surface lattice resonance. Photonics 2022, 9, 22. [Google Scholar] [CrossRef]
- Lin, S.; Fleming, J.G.; El-Kady, I. Experimental observation of photonic-crystal emission near a photonic band edge. Appl. Phys. Lett. 2003, 83, 593–595. [Google Scholar] [CrossRef]
- Lin, S.Y.; Fleming, J.G.; Li, Z.Y.; El-Kady, I.; Biswas, R.; Ho, K.M. Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal. J. Opt. Soc. Am. B 2003, 20, 1538–1541. [Google Scholar] [CrossRef]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [Green Version]
- Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Kavokin, A.V.; Shelykh, I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 2007, 76, 165415. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.; Xu, Y.; Zhou, Z.; Zhang, D.; Zhang, H. Theoretical investigation of a sensor based on one-dimensional photonic crystals to measure four physical quantities. IEEE Sens. J. 2020, 21, 2846–2853. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D. Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys. B 2021, 607, 412854. [Google Scholar] [CrossRef]
- Kaňok, R.; Hlubina, P.; Gembalová, L.; Ciprian, D. Efficient optical sensing based on phase shift of waves supported by a one-dimensional photonic crystal. Sensors 2021, 21, 6535. [Google Scholar] [CrossRef]
- Wang, F.; Cheng, Y.Z.; Wang, X.; Qi, D.; Luo, X.; Gong, R.Z. Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band. Opt. Mater. 2018, 75, 373–378. [Google Scholar] [CrossRef]
- Jena, S.; Tokas, R.B.; Sarkar, P.; Misal, J.S.; Haque, S.M.; Rao, K.D.; Thakur, S.; Sahoo, N.K. Omnidirectional photonic band gap in magnetron sputtered TiO2/SiO2 one-dimensional photonic crystal. Thin Solid Film. 2016, 599, 138–144. [Google Scholar] [CrossRef]
- Kong, X.; Liu, S.; Zhang, H.; Li, C.; Bian, B. Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals. J. Opt. 2011, 13, 035101. [Google Scholar] [CrossRef]
- Trabelsi, Y.; Belhadj, W.; Ali, N.B.; Aly, A.H. Theoretical study of tunable optical resonators in periodic and quasiperiodic one-dimensional photonic structures incorporating a nematic liquid crystal. Photonics 2021, 8, 150. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D.; Wu, F.; Belhadj, W. Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus 2021, 136, 809. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Orlov, A.A.; Babicheva, V.E.; Lavrinenko, A.V.; Sipe, J.E. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials. Phys. Rev. A 2014, 90, 013801. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Lu, G.; Guo, Z.; Jiang, H.; Xue, C.; Zheng, M.; Chen, C.; Du, G.; Chen, H. Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Phys. Rev. Appl. 2018, 10, 064022. [Google Scholar] [CrossRef]
- Wu, F.; Lyu, K.; Hu, S.; Yao, M.; Xiao, S. Ultra-large omnidirectional photonic band gaps in one-dimensional ternary photonic crystals composed of plasma, dielectric and hyperbolic metamaterial. Opt. Mater. 2021, 111, 110680. [Google Scholar] [CrossRef]
- Xia, J.; Chen, Y.; Xiang, Y. Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals. Opt. Express 2021, 29, 12160–12168. [Google Scholar] [CrossRef]
- Tumkus, T.; Zhu, G.; Black, P.; Barnakov, Y.A.; Bonner, C.E.; Noginov, M.A. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 2011, 99, 151115. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.M.; Quan, X.; Cheng, P. A perfect absorber design using a natural hyperbolic material for harvesting solar energy. Sol. Energy 2018, 159, 329–336. [Google Scholar] [CrossRef]
- Qi, H.; Sang, T.; Wang, L.; Yin, X.; Wang, J.; Wang, Y. Dual-band light absorption enhancement in hyperbolic rectangular array. Appl. Sci. 2019, 9, 2011. [Google Scholar] [CrossRef] [Green Version]
- Janaszek, B.; Szczepański, P. Distributed feedback laser based on tunable photonic hypercrystal. Materials 2021, 14, 4065. [Google Scholar] [CrossRef]
- Xue, C.; Ding, Y.; Jiang, H.; Li, Y.; Wang, Z.; Zhang, Y.; Chen, H. Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials. Phys. Rev. B 2016, 93, 125310. [Google Scholar] [CrossRef]
- Wu, F.; Lu, G.; Xue, C.; Jiang, H.; Guo, Z.; Zheng, M.; Chen, C.; Du, G.; Chen, H. Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths. Appl. Phys. Lett. 2018, 112, 041902. [Google Scholar] [CrossRef]
- Shen, K.; Li, X.; Zheng, Y.; Liu, H.; Dong, S.; Zhang, J.; Xia, S.; Dong, C.; Sun, X.; Zhang, X.; et al. Near-infrared ITO-based photonic hypercrystals with large angle-insensitive bandgaps. Opt. Lett. 2022, 47, 917–920. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Y.; Hao, Q.; Kiraly, B.; Khoo, I.C.; Chen, S.; Huang, T.J. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express 2011, 19, 15221–15228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Wu, L.; Liu, Y.; Lu, Y.; Wang, F.; Shao, W.; Fu, S.; Tong, G. Ultrawide bandwidth and large-angle electromagnetic wave absorption based on triple-nested helix metamaterial absorbers. J. Appl. Phys. 2020, 127, 174901. [Google Scholar] [CrossRef]
- Yeh, P. Optical Waves in Layered Media; Wiley: Hoboken, NJ, USA, 1988. [Google Scholar]
- Dominici, L.; Michelotti, F.; Brown, T.M.; Reale, A.; Carlo, A.D. Plasmon polaritons in the near infrared on fluorine doped tin oxide films. Opt. Express 2009, 17, 10155–10167. [Google Scholar] [CrossRef]
- Xu, P.; Tian, H.P.; Ji, Y.F. One-dimensional fractal photonic crystal and its characteristics. J. Opt. Soc. Am. B 2010, 27, 640–647. [Google Scholar] [CrossRef]
- Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 2015, 40, 1–40. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Chan, C.T.; Sheng, P. Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 2003, 90, 083901. [Google Scholar] [CrossRef]
- Palik, E. Handbook of Optical Constants of Solids; Academic: New York, NY, USA, 1998. [Google Scholar]
- Losego, M.D.; Efremenko, A.Y.; Rhodes, C.L.; Cerruti, M.G.; Franzen, S.; Maria, J. Conductive oxide thin films: Model systems for understanding better plasmonic materials. J. Appl. Phys. 2009, 106, 024903. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Li, X.; Fan, X.; Lin, L.; Taya, S.A.; Panda, A. Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect in Photonic Crystal Containing Hyperbolic Metamaterials. Photonics 2022, 9, 181. https://doi.org/10.3390/photonics9030181
Wu F, Li X, Fan X, Lin L, Taya SA, Panda A. Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect in Photonic Crystal Containing Hyperbolic Metamaterials. Photonics. 2022; 9(3):181. https://doi.org/10.3390/photonics9030181
Chicago/Turabian StyleWu, Feng, Xiaoqing Li, Xiufeng Fan, Ling Lin, Sofyan A. Taya, and Abinash Panda. 2022. "Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect in Photonic Crystal Containing Hyperbolic Metamaterials" Photonics 9, no. 3: 181. https://doi.org/10.3390/photonics9030181
APA StyleWu, F., Li, X., Fan, X., Lin, L., Taya, S. A., & Panda, A. (2022). Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect in Photonic Crystal Containing Hyperbolic Metamaterials. Photonics, 9(3), 181. https://doi.org/10.3390/photonics9030181