D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing
Abstract
:1. Introduction
2. Theory Calculation
3. Experimental Section
3.1. Materials
3.2. Physical Measurements
3.3. Synthesis
3.4. Resin Preparation
3.5. TPPAM Test
4. Results and Discussions
4.1. Linear Absorption and Fluorescence Spectra
4.2. Two-Photon Fluorescence Spectra
4.3. Cyclic Voltammograms
4.4. UV Light Stability
4.5. TPPAM Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Mizeikis, V.; Xu, Y.; Juodkazis, S.; Ye, J.; Matsuo, S.; Misawa, H. Microcavities in polymeric photonic crystals. Appl. Phys. Lett. 2001, 79, 1–3. [Google Scholar] [CrossRef]
- Serbin, J.; Egbert, A.; Ostendorf, A.; Chichkov, B.N.; Houbertz, R.; Domann, G.; Schulz, J.; Cronauer, C.; Fröhlich, L.; Popall, M. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt. Lett. 2003, 28, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Morales-Delgado, E.E.; Urio, L.; Conkey, D.B.; Stasio, N.; Moser, D.P.C. Three-dimensional microfabrication through a multimode optical fiber. Opt. Express. 2016, 25, 7031–7045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gissibl, T.; Thiele, S.; Herkommer, A.; Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 2016, 10, 554–560. [Google Scholar] [CrossRef]
- Cumpston, B.H.; Ananthavel, S.P.; Barlow, S.; Dyer, D.L.; Ehrlich, J.E.; Erskine, L.L.; Heikal, A.A.; Kuebler, S.M.; Lee, I.-Y.S.; Maughon, D.; et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999, 398, 51–54. [Google Scholar] [CrossRef]
- Parthenopoulos, D.A.; Rentzepis, P.M. Three-dimensional optical storage memory. Science 1989, 245, 843–845. [Google Scholar] [CrossRef]
- Yuan, X.; Zhao, M.; Guo, X.; Gan, Z.; Ruan, H. Ultra-high capacity for three-dimensional optical data storage inside transparent fluorescent tape. Opt. Lett. 2020, 45, 1535–1538. [Google Scholar] [CrossRef]
- Moussi, K.; Bukhamsin, A.; Hidalgo, T.; Kosel, J. Biocompatible 3D Printed Microneedles for Transdermal, Intradermal, and Percutaneous Applications. Adv. Eng. Mater. 2020, 22, 1901358. [Google Scholar] [CrossRef] [Green Version]
- Balčiūnas, E.; Baldock, S.J.; Dreižė, N.; Grubliauskaitė, M.; Coultas, S.; Rochester, D.L.; Valius, M.; Hardy, J.G.; Baltriukienė, D. 3D printing hybrid organometallic polymer-based biomaterials via laser two-photon polymerization. Polym. Int. 2019, 68, 1928–1940. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wu, S.Z.; Xu, J.; Niu, L.G.; Midorikawa, K.; Sugioka, K. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip. Laser Photonics Rev. 2014, 8, 458–467. [Google Scholar] [CrossRef]
- Zhou, X.; Hou, Y.; Lin, J. A review on the processing accuracy of two-photon polymerization. AIP Adv. 2015, 5, 030701. [Google Scholar] [CrossRef]
- Nazir, R.; Thorsted, B.; Balčiūnas, E.; Mazur, L.; Deperasińska, I.; Samoć, M.; Brewer, J.; Farsari, M.; Gryko, D.T. π-Expanded 1, 3-diketones–synthesis, optical properties and application in two-photon polymerization. J. Mater. Chem. C 2016, 4, 167–177. [Google Scholar] [CrossRef]
- Malval, J.-P.; Jin, M.; Morlet-Savary, F.; Chaumeil, H.; Defoin, A.; Soppera, O.; Scheul, T.; Bouriau, M.; Baldeck, P.L. Enhancement of the two-photon initiating efficiency of a thioxanthone derivative through a chevron-shaped architecture. Chem. Mater. 2011, 23, 3411–3420. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, D.; You, J.; Hao, T.; Li, X.; Nie, J.; Wang, T. Acetylene bridged D-(π-A)2 type dyes containing benzophenone moieties: Photophysical properties, and the potential application as photoinitiators. Dyes Pigments 2021, 184, 108583. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Q.; Castañon, A.; He, Y.; Liu, Y.; Paul, B.T.; Tuck, C.J.; Hague, R.J.M.; Wildman, R.D. Multi-branched benzylidene ketone based photoinitiators for multiphoton fabrication. Addit. Manuf. 2017, 16, 206–212. [Google Scholar] [CrossRef]
- Hao, F.; Liu, Z.; Zhang, M.; Liu, J.; Zhang, S.; Wu, J.; Zhou, H.; Tian, Y.P. Four new two-photon polymerization initiators with varying donor and conjugated bridge: Synthesis and two-photon activity. Spectrochim. Acta Part A 2014, 118, 538–542. [Google Scholar] [CrossRef]
- Li, Z.; Rosspeintner, A.; Hu, P.; Zhu, G.; Hu, Y.; Xiong, X.; Peng, R.; Wang, M.; Liu, X.; Liu, R. Silyl-based initiators for two-photon polymerization: From facile synthesis to quantitative structure–activity relationship analysis. Polym. Chem. 2017, 8, 6644–6653. [Google Scholar] [CrossRef]
- Jin, M.; Hong, H.; Xie, J.C.; Malval, J.P.; Spangenberg, A.; Soppera, O.; Wan, D.C.; Pu, H.T.; Versace, D.L.; Leclerc, T.; et al. π-conjugated sulfonium-based photoacid generators: An integrated molecular approach for efficient one and two-photon polymerization. Polym. Chem. 2014, 5, 4747–4755. [Google Scholar] [CrossRef]
- Li, S.; Lu, C.; Wan, X.; Zhang, S.; Li, J.; He, Z.; Zhang, L. Enhancement of two-photon initiation efficiency based on conjugated phenothiazine and carbazole derivatives. Mater. Today Commun. 2020, 24, 101219. [Google Scholar] [CrossRef]
- Li, S.; Hu, J.; Zhang, S.; Feng, C.; Zhang, L.; Wang, C.; He, Z.; Zhang, L. Novel A-π-D-π-A structure two-photon polymerization initiators based on phenothiazine and carbazole derivatives. Chem. Pap. 2021, 75, 5249–5256. [Google Scholar] [CrossRef]
- Nazir, R.; Bourquard, F.; Balciunas, E.; Smolen, S.; Gray, D.; Tkachenko, N.V.; Farsari, M.; Gryko, D.T. π-Expanded α, β-Unsaturated Ketones: Synthesis, Optical Properties, and Two-Photon-Induced Polymerization. ChemPhysChem 2015, 16, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Gao, H.; Wang, T.; Zhang, B.; Xing, W.; Cheng, X. Benzothiadiazole-based D-π-A-π-D fluorophores: Synthesis, self-assembly, thermal and photophysical characterization. Dyes Pigments 2017, 147, 190–198. [Google Scholar] [CrossRef]
- Nazir, R.; Balčiunas, E.; Buczyńska, D.; Bourquard, F.; Kowalska, D.; Gray, D.; Maćkowski, S.; Farsari, M.; Gryko, D.T. Donor–Acceptor Type Thioxanthones: Synthesis, Optical Properties, and Two-Photon Induced Polymerization. Macromolecules 2015, 48, 2466–2472. [Google Scholar] [CrossRef]
- Hu, P.; Zhu, J.; Liu, R.; Li, Z. Conjugated Ketocarbazoles as Efficient Photoinitiators: From Facile Synthesis to Efficient Two-photon Polymerization. Photopolym. Sci. Technol. 2019, 32, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Han, W.; Xue, T.; Zhao, D.; Li, X.; Nie, J.; Wang, T. Diphenyl sulfone-based A–π-D–π-A dyes as efficient initiators for one-photon and two-photon initiated polymerization. Polym. Chem. 2019, 10, 2152–2161. [Google Scholar] [CrossRef]
- Zheng, Y.-C.; Zhao, Y.-Y.; Zheng, M.-L.; Chen, S.-L.; Liu, J.; Jin, F.; Dong, X.-Z.; Zhao, Z.-S.; Duan, X.-M. Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions. ACS Appl. Mater. Interfaces 2019, 11, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, X.; Zhao, Y. Study on a series of water-soluble photoinitiators for fabrication of 3D hydrogels by two-photon polymerization. Dyes Pigments 2017, 141, 413–419. [Google Scholar] [CrossRef]
- Li, Z.; Siklos, M.; Pucher, N.; Cicha, K.; Ajami, A.; Husinsky, W.; Rosspeintner, A.; Vauthey, E.; Gescheidt, G.; Stampfl, J.; et al. Synthesis and structure-activity relationship of several aromatic ketone-based two-photon initiators. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3688–3699. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, S.; Wan, X.; Ma, J.; Li, N.; Li, J.; Yin, Q. Ultrafast, high-resolution and large-size three-dimensional structure manufacturing through high-efficiency two-photon polymerization initiators. Addit. Manuf. 2021, 47, 102358. [Google Scholar] [CrossRef]
- Gan, X.; Wang, Y.; Ge, X.; Li, W.; Zhang, X.; Zhu, W.; Zhou, H.; Wu, J.; Tian, Y. Triphenylamine isophorone derivatives with two photon absorption: Photo-physical property, DFT study and bio-imaging. Dyes Pigments 2015, 120, 65–73. [Google Scholar] [CrossRef]
- Silva, D.L.; de Boni, L.; Correa, D.S.; Costa, S.C.S.; Hidalgo, A.A.; Zilio, S.C.; Canuto, S.; Mendonca, C.R. Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study. Opt. Mater. 2012, 34, 1013–1018. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Santos, B.; Gonçalves, A.; Souza, A.; Freitas, C.; Cabral, L.; Albuquerque, M.; Castro, H.; Santos, E.; Rodrigues, C. Molecular Modeling Studies of the Structural, Electronic, and UV Absorption Properties of Benzophenone Derivatives. J. Phys. Chem. A 2012, 116, 10927–10933. [Google Scholar] [CrossRef]
- Sonogashira, K.; Tohda, Y.; Hagihara, N. A Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes, Iodoarenes and Bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. [Google Scholar] [CrossRef]
- Xu, C.; Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 1996, 13, 481–491. [Google Scholar] [CrossRef]
- Haq, B.S.; Khan, H.U.; Alam, K.; Ajmal, M.; Attaullah, S.; Zari, I. Determination of two-photon absorption cross sections of photosensitizers and its implications for two-photon polymerization. Appl. Opt. 2015, 54, 132–140. [Google Scholar] [CrossRef]
HOMO (eV) | LUMO (eV) | Gap (eV) | Dippole (Debye) | |
---|---|---|---|---|
BM-PPPM | −5.01 | −1.85 | 3.16 | 6.4644 |
BD-PPM | −4.96 | −1.78 | 3.18 | 6.5658 |
BD-PM | −5.71 | −1.49 | 4.21 | 4.2349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, X.; Zhang, S.; Zhou, Y.; Wan, X.; Li, N.; Li, J.; Zhang, L. D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing. Photonics 2022, 9, 183. https://doi.org/10.3390/photonics9030183
Li S, Liu X, Zhang S, Zhou Y, Wan X, Li N, Li J, Zhang L. D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing. Photonics. 2022; 9(3):183. https://doi.org/10.3390/photonics9030183
Chicago/Turabian StyleLi, Shanggeng, Xiaolin Liu, Shuai Zhang, Yawen Zhou, Xiangyu Wan, Ning Li, Jing Li, and Lin Zhang. 2022. "D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing" Photonics 9, no. 3: 183. https://doi.org/10.3390/photonics9030183
APA StyleLi, S., Liu, X., Zhang, S., Zhou, Y., Wan, X., Li, N., Li, J., & Zhang, L. (2022). D–π–A–π–D Initiators Based on Benzophenone Conjugate Extension for Two-Photon Polymerization Additive Manufacturing. Photonics, 9(3), 183. https://doi.org/10.3390/photonics9030183