Parabola-Like Gold Nanobowtie on Sapphire Substrate as Nano-Cavity
Abstract
:1. Introduction
2. Design and Method
3. Results and Discussion
3.1. Scattering and Absorption of the PGNB, Dependent on Geometry
3.2. Optimization of the Field Enhancement Factor
3.3. Influence of the Polarization Angle for the Light Source
3.4. Feasibility for Nanofabrication of the PGNB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumberg, J.J.; Aizpurua, J.; Mikkelsen, M.H.; Smith, D.R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678. [Google Scholar] [CrossRef]
- Ciracì, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernández-Domínguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. [Google Scholar] [CrossRef]
- Li, W.; Tong, X.; Yang, Z.; Zhang, J.; Liu, B.; Chen, C.P. Improved Sensitivity of Surface-Enhanced Raman Scattering with Gold Nanoparticles-Insulator-Metal Sandwich Layers on Flat Sapphire Substrate. Nanomaterials 2021, 11, 2416. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Huang, W.; El-Sayed, M.A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 2007, 7, 2080–2088. [Google Scholar] [CrossRef]
- Li, W. Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film. Plasmonics 2018, 13, 997–1014. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, R.E.; Michon, J.; Benzaouia, M.; Sigmund, O.; Johnson, S.G. Inverse design of nanoparticles for enhanced Raman scattering. Opt. Express 2020, 28, 4444–4462. [Google Scholar] [CrossRef] [PubMed]
- Crozier, K.B.; Zhu, W.; Wang, D.; Lin, S.; Best, M.D.; Camden, J.P. Plasmonics for Surface Enhanced Raman Scattering: Nanoantennas for Single Molecules. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 152–162. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; Yi, Z.; Glushenkov, A.M.; Kong, L. Plasmonic substrates for surface enhanced Raman scattering. Anal. Chim. Acta 2017, 984, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yu, P.; Wang, W.; Kuo, H.-C.; Govorov, A.O.; Sun, S.; Wang, Z. Nanoantenna-Enhanced Light-Emitting Diodes: Fundamental and Recent Progress. Laser Photonics Rev. 2021, 15, 2000367. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Hao, H.; Bian, H.; Aubin, H.; Wei, Y.; Li, H.; Liu, T.; Degiron, A.; Wang, H. Bright CdSe/CdS Quantum Dot Light-Emitting Diodes with Modulated Carrier Dynamics via the Local Kirchhoff Law. ACS Appl. Mater. Interfaces 2021, 13, 56476–56484. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Rodriguez, M.; Wang, Y. Native fluorescence enhancement using an Aluminum bowtie nano-antenna. SPIE 2020, 11466, 10–14. [Google Scholar]
- Salah, O.; Fahmy, A.N.F.; Farhat, O.H.M.; Hussein, A.M. Optical Nano-Antennas for Energy Harvesting. In Information Resources Management, Renewable and Alternative Energy: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; pp. 161–196. [Google Scholar]
- Castilla, S.; Vangelidis, I.; Pusapati, V.-V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T.; et al. Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 2020, 11, 4872. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ji, Z.; Zhou, J.; Yu, Y.; Dai, X.; Lan, M.; Bu, Y.; Zhu, T.; Li, Z.; Hao, J.; et al. Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film. Nanoscale 2020, 12, 11808–11817. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, G.; Zhang, S.; Feng, X.; Liu, Z.; Wang, G.; Yang, S.; Ding, G. Resonant nanocavity-enhanced graphene photodetectors on reflecting silicon-on-insulator wafers. Appl. Phys. Lett. 2021, 119, 232104. [Google Scholar] [CrossRef]
- Seitl, L.; Laible, F.; Dickreuter, S.; Gollmer, D.A.; Kern, D.P.; Fleischer, M. Miniaturized fractal optical nanoantennas defined by focused helium ion beam milling. Nanotechnology 2019, 31, 075301. [Google Scholar] [CrossRef]
- Horák, M.; Bukvišová, K.; Švarc, V.; Jaskowiec, J.; Křápek, V.; Šikola, T. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Sci. Rep. 2018, 8, 9640. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhan, C.; Yao, X.; Yan, S.; Ren, B. Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography. Nanoscale 2020, 12, 21401–21408. [Google Scholar] [CrossRef] [PubMed]
- Křápek, V.; Konečná, A.; Horák, M.; Ligmajer, F.; Stöger-Pollach, M.; Hrtoň, M.; Babocký, J.; Šikola, T. Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics 2020, 9, 623–632. [Google Scholar] [CrossRef]
- Guo, R.; Kinzel, E.C.; Li, Y.; Uppuluri, S.M.; Raman, A.; Xu, X. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna. Opt. Express 2010, 18, 4961–4971. [Google Scholar] [CrossRef] [PubMed]
- Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J.J. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci. Rep. 2016, 6, 23203. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.; Li, Z.; Olbricht, B.C.; Fu, L.; Haque, A.; Li, L.; Rifat, A.A.; Rahmani, M.; Miroshnichenko, A.E.; Hattori, H.T. High Fluence Chromium and Tungsten Bowtie Nano-antennas. Sci. Rep. 2019, 9, 13023. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.-C.; Holzgrafe, J.; Jensen, R.A.; Choy, J.T.; Bawendi, M.G.; Lončar, M. 10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process. Appl. Phys. Lett. 2016, 109, 133105. [Google Scholar] [CrossRef]
- Wang, W.; Christensen, T.; Jauho, A.-P.; Thygesen, K.S.; Wubs, M.; Mortensen, N.A. Plasmonic eigenmodes in individual and bow-tie graphene nanotriangles. Sci. Rep. 2015, 5, 9535. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Lu, Y.; Lankanath, D.; Hou, X.; Chen, F. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas. Nanomaterials 2021, 11, 759. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Singh, S.C.; Lu, H.; Guo, C. Design of Aluminum Bowtie Nanoantenna Array with Geometrical Control to Tune LSPR from UV to Near-IR for Optical Sensing. Plasmonics 2020, 15, 609–621. [Google Scholar] [CrossRef]
- Ding, W.; Bachelot, R.; Kostcheev, S.; Royer, P.; Lamaestre, R.E.D. Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles. J. Appl. Phys. 2010, 108, 124314. [Google Scholar] [CrossRef]
- Hrtoň, M.; Konečná, A.; Horák, M.; Šikola, T.; Křápek, V. Plasmonic Antennas with Electric, Magnetic, and Electromagnetic Hot Spots Based on Babinet’s Principle. Phys. Rev. Appl. 2020, 13, 054045. [Google Scholar] [CrossRef]
- Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; de Abajo, F.J.G. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Bachelot, R.; de Lamaestre, R.E.; Macias, D.; Baudrion, A.L.; Royer, P. Understanding near/far-field engineering of optical dimer antennas through geometry modification. Opt. Express 2009, 17, 21228–21239. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; de Nijs, B.; Tserkezis, C.; Chikkaraddy, R.; Sigle, D.O.; Pukenas, L.; Evans, S.D.; Aizpurua, J.; Baumberg, J.J. Generalized circuit model for coupled plasmonic systems. Opt. Express 2015, 23, 33255–33269. [Google Scholar] [CrossRef] [PubMed]
- Campione, S.; Warne, L.K.; Goldflam, M.D.; Peters, D.W.; Sinclair, M.B. Improved quantitative circuit model of realistic patch-based nanoantenna-enabled detectors. J. Opt. Soc. Am. B 2018, 35, 2144–2152. [Google Scholar] [CrossRef]
- Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 2007, 317, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Engheta, N.; Salandrino, A.; Alù, A. Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors. Phys. Rev. Lett. 2005, 95, 095504. [Google Scholar] [CrossRef] [PubMed]
- Venediktov, V.Y.; Efremova, E.A.; Krylov, I.R.; Prokhorova, U.V. Analysis of the use of the LCR circuit model for evaluating the resonant response of thin rectangular nanoantennas. Quantum Electron. 2019, 49, 676–682. [Google Scholar] [CrossRef]
- Hughes, T.W.; Fan, S. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot. Nano Lett. 2016, 16, 5764–5769. [Google Scholar] [CrossRef] [PubMed]
- Pae, J.-S.; Im, S.-J.; Song, K.-S.; Ri, C.-S.; Ho, K.-S.; Han, Y.-H.; Herrmann, J. Deep subwavelength flow-resonant modes in a waveguide-coupled plasmonic nanocavity. Phys. Rev. B 2020, 101, 245420. [Google Scholar] [CrossRef]
- Dudek, M.; Kowerdziej, R.; Pianelli, A.; Parka, J. Graphene-based tunable hyperbolic microcavity. Sci. Rep. 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D. Electromagnetic Simulation Using the FDTD Method; IEEE Inc.: New York, NY, USA, 2000. [Google Scholar]
- Ciesielski, A.; Skowronski, L.; Trzcinski, M.; Górecka, E.; Trautman, P.; Szoplik, T. Evidence of germanium segregation in gold thin films. Surf. Sci. 2018, 674, 73–78. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Pittsburgh, MD, USA, 1997. [Google Scholar]
- Maier, S. Plasmonics: Fundamentals and Applications; Springer + Business Media LLC: New York, NY, USA, 2007. [Google Scholar]
- Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres. Plasmonics 2016, 11, 941–951. [Google Scholar] [CrossRef]
- Kheirandish, A.; Javan, N.S.; Mohammadzadeh, H. Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Sci. Rep. 2020, 10, 6517. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Nordlander, P. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 2007, 446, 115–118. [Google Scholar] [CrossRef]
- Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Marshall, U.I.A.R. Chapter 7 Introduction of Sources, Numerical Electromagnetics: The FDTD Method; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Giannini, V.; Fernández-Domínguez, A.I.; Heck, S.C.; Maier, S.A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912. [Google Scholar] [CrossRef]
- Urbieta, M.; Barbry, M.; Zhang, Y.; Koval, P.; Sánchez-Portal, D.; Zabala, N.; Aizpurua, J. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano 2018, 12, 585–595. [Google Scholar] [CrossRef]
- Luo, S.; Hoff, B.H.; Maier, S.A.; de Mello, J.C. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level. Adv. Sci. 2021, 8, 2102756. [Google Scholar] [CrossRef]
- He, S.; Tian, R.; Wu, W.; Li, W.-D.; Wang, D. Helium-ion-beam nanofabrication: Extreme processes and applications. Int. J. Extrem. Manuf. 2021, 3, 012001. [Google Scholar] [CrossRef]
- Chen, Y.; Shu, Z.; Zhang, S.; Zeng, P.; Liang, H.; Zheng, M.; Duan, H. Sub-10 nm fabrication: Methods and applications. Int. J. Extrem. Manuf. 2021, 3, 032002. [Google Scholar] [CrossRef]
- Siegfried, T.; Ekinci, Y.; Martin, O.J.; Sigg, H. Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators. Nano Lett. 2013, 13, 5449–5453. [Google Scholar] [CrossRef]
- Duan, H.; Hu, H.; Kumar, K.; Shen, Z.; Yang, J.K.W. Direct and Reliable Patterning of Plasmonic Nanostructures with Sub-10-nm Gaps. ACS Nano 2011, 5, 7593–7600. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Banaee, M.G.; Wang, D.; Chu, Y.; Crozier, K.B. Lithographically fabricated optical antennas with gaps well below 10 nm. Small 2011, 7, 1761–1766. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Zhang, H.; Xia, F.; Wang, C.; Yang, F.; Zhang, X.; Liu, Q. Fabrication-resolution enhancement method based on low-energy multiple exposures. Opt. Express 2015, 23, 29353–29359. [Google Scholar] [CrossRef]
- Kollmann, H.; Piao, X.; Esmann, M.; Becker, S.F.; Hou, D.; Huynh, C.; Kautschor, L.-O.; Bösker, G.; Vieker, H.; Beyer, A.; et al. Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas. Nano Lett. 2014, 14, 4778–4784. [Google Scholar] [CrossRef]
- Fischbein, M.D.; Drndić, M. Sub-10 nm Device Fabrication in a Transmission Electron Microscope. Nano Lett. 2007, 7, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Pasupathy, A.N.; Goldsmith, J.I.; Chang, C.; Yaish, Y.; Petta, J.R.; Rinkoski, M.; Sethna, J.P.; Abruña, H.D.; McEuen, P.L.; et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 2002, 417, 722–725. [Google Scholar] [CrossRef] [PubMed]
Wing Length 100 nm (nm) | Wing Width | Thickness | Gap Size | Wing Width | Thickness | Gap Size | Wing Width | Thickness | Gap Size |
---|---|---|---|---|---|---|---|---|---|
10~100 | 50 | 3 | 10 | 50 | 0~15 | 10 | 5~100 | 3 | |
Scattering cross section (nm2) | Increase to 8.287 × 104 nm2 from 9.668 × 103 nm2 | Above 8.048 × 103 nm2, slight variation | Increase to 2.847 × 104 nm2 from 360.5 nm2 | ||||||
Absorption cross section (nm2) | Above 3.6 × 104 nm2 (>908 nm), sharp decrease to 2.8 × 104 nm2 at 885 nm | Above 3.5 × 104 nm2, slight variation | Increase to 5.578 × 104 nm2 from 4.306 × 103 nm2 | ||||||
Extinction cross section (nm2) | Increase to 1.1 × 105 nm2 from 4.7 × 104 nm2 | Above 4.4 × 104 nm2, slight variation | Increase to 8.425 × 104 nm2 from 4.4 × 103 nm2 | ||||||
Absorption ratio | 0.29~0.35 (>908 nm), jump to 0.19 at 885 nm | Between 0.32 and 0.38 | Increase to 0.5196 from 0.04 | ||||||
Resonance shift | Blue shift from 1227 nm to 886 nm | Blue shift from 2 μm to 1148 nm | Blue shift from 2 μm to 1147 nm |
Wing Length 100 nm (nm) | Wing Width | Thickness | Gap Size | Wing Width | Thickness | Gap Size | Wing Width | Thickness | Gap Size | |
---|---|---|---|---|---|---|---|---|---|---|
10~100 | 50 | 3 | 10 | 50 | 0~15 | 10 | 5~100 | 3 | ||
Average enhancement factor | Maximum value | EFmax = 276.9 at resonance wavelength 1274 nm, with a wing width of 10 nm. | EFmax = 351.7 at resonance wavelength 1322 nm with a gap size of 1.2 nm. | EFmax = 484 at resonance wavelength 1557 nm with a thickness of 16.63 nm. | ||||||
Variation trend | EF increased with red shift of resonance wavelength from 911 nm (EF = 52.45) to 1274 nm (EF = 276.9). | EF increased with red shift of resonance wavelength from 1149 nm (EF = 177, gap = 15 nm) to 1322 nm (EF = 351.7, gap = 1.2 nm), slightly decreased at resonance wavelength 1374 nm (EF = 346.9, gap = 0.9 nm/0.6 nm). | EF increased with red shift of resonance wavelength from 1149 nm (EF = 232.6, thickness = 100 nm) to 1157 nm (EF = 484, thickness = 16.63 nm), then decreased to EF = 420 at resonance wavelength 2 μm. | |||||||
Gap enhancement factor | Maximum value | EFmax = 811 at resonance wavelength 1230 nm, with a wing width of 10 nm. | EFmax = 1504 at resonance wavelength 1374 nm with a gap size of 0.9 nm or 0.6 nm. | EFmax = 1019 at resonance wavelength 1430 nm with a thickness of 22.45 nm. | ||||||
Variation trend | EF increased with red shift of resonance wavelength from 910 nm (187) to 1274 nm (811). | EF increased with red shift of resonance wavelength from 911 nm (EF = 74, gap = 15 nm) to 1374 nm (EF = 1504, gap = 0.9 nm or 0.6 nm). | EF increased with red shift of resonance wavelength from 1149 nm (EF = 561, thickness = 100 nm) to 1430 nm (EF = 1019, thickness = 22.45 nm), then decreased to EF = 768.5 at resonance wavelength 2 μm. | |||||||
Resonance shift | Blue shift from about 1230 nm (wing width of 10 nm) to 911 nm (wing width of about 45 nm). From wing width 45 nm to 100 nm, the resonance wavelength kept at about 911 nm. | With narrowing of gap size from 15 nm to 0.6 nm, resonance redshift 1149 nm to 1374 nm for average EF and gap EF. When gap size was reduced to under 0.6 nm, resonance blue-shifted to 911 nm (gap EF). | Blue shift from 2 μm (thickness = 5 nm) to 1149 nm (thickness = 71 nm). With a thickness from 71 nm to 100 nm, the resonance wavelength almost kept at 1149 nm. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yang, Z.; Zhang, J.; Tong, X.; Zhang, Y.; Liu, B.; Chen, C.P. Parabola-Like Gold Nanobowtie on Sapphire Substrate as Nano-Cavity. Photonics 2022, 9, 193. https://doi.org/10.3390/photonics9030193
Li W, Yang Z, Zhang J, Tong X, Zhang Y, Liu B, Chen CP. Parabola-Like Gold Nanobowtie on Sapphire Substrate as Nano-Cavity. Photonics. 2022; 9(3):193. https://doi.org/10.3390/photonics9030193
Chicago/Turabian StyleLi, Wenbing, Zhuo Yang, Jiali Zhang, Xin Tong, Yuheng Zhang, Bo Liu, and Chao Ping Chen. 2022. "Parabola-Like Gold Nanobowtie on Sapphire Substrate as Nano-Cavity" Photonics 9, no. 3: 193. https://doi.org/10.3390/photonics9030193
APA StyleLi, W., Yang, Z., Zhang, J., Tong, X., Zhang, Y., Liu, B., & Chen, C. P. (2022). Parabola-Like Gold Nanobowtie on Sapphire Substrate as Nano-Cavity. Photonics, 9(3), 193. https://doi.org/10.3390/photonics9030193