The Third-Order Nonlinear Optical Properties of Sb2S3/RGO Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Synthesis of GO
2.1.2. Synthesis of Sb2S3/RGO Composites
2.2. Sample Characterization
3. Results
3.1. Structural and Morphology Characterization
3.2. Linear Optical Properties
3.3. Nonlinear Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Jin, X.; Li, C.; Wang, W.; Wu, H.; Guo, S. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. Chem. Eng. J. 2019, 370, 831–854. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, X.; Liu, B.; Deng, S.; Xie, D.; Liu, Q.; Wang, Y.; Wu, J.; Wang, X.; Tu, J. Multiscale graphene-based materials for applications in sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803342. [Google Scholar] [CrossRef]
- Lawal, A.T. Graphene-based nano composites and their applications. A review. Biosens. Bioelectron. 2019, 141, 111384. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020, 24, 22–51. [Google Scholar] [CrossRef]
- Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676. [Google Scholar] [CrossRef]
- Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics 2019, 4, 034301. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Liu, X.; Guo, Q.; Qiu, J. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics. Adv. Mater. 2017, 29, 1605886. [Google Scholar] [CrossRef]
- Wu, L.; Huang, W.; Wang, Y.; Zhao, J.; Ma, D.; Xiang, Y.; Li, J.; Ponraj, J.S.; Dhanabalan, S.C.; Zhang, H. 2D Tellurium Based High-Performance All-Optical Nonlinear Photonic Devices. Adv. Funct. Mater. 2019, 29, 1806346. [Google Scholar] [CrossRef]
- Balapanuru, J.; Yang, J.X.; Xiao, S.; Bao, Q.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q.H.; Loh, K.P. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem. Int. Ed. Engl. 2010, 49, 6549–6553. [Google Scholar] [CrossRef]
- Feng, M.; Zhan, H.; Chen, Y. Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett. 2010, 96, 033107. [Google Scholar] [CrossRef]
- Wei, W.; He, T.; Teng, X.; Wu, S.; Ma, L.; Zhang, H.; Ma, J.; Yang, Y.; Chen, H.; Han, Y.; et al. Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. Small 2012, 8, 2271–2276. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Miao, L.; Jiang, G.; Chen, Y.; Qi, X.; Jiang, X.F.; Zhang, H.; Wen, S. Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications. Sci. Rep. 2015, 5, 16372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Wang, F.; Guixia, W.; Gu, Y. Oxygen-containing-defect-induced synergistic nonlinear optical enhancement of graphene/CdS nanohybrids under single pulse laser irradiation. Photonics Res. 2018, 6, 1158–1169. [Google Scholar] [CrossRef]
- Ge, Y.; Zhu, Z.; Xu, Y.; Chen, Y.; Chen, S.; Liang, Z.; Song, Y.; Zou, Y.; Zeng, H.; Xu, S.; et al. Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices. Adv. Opt. Mater. 2018, 6, 1701166. [Google Scholar] [CrossRef]
- Liang, F.; Kang, L.; Lin, Z.; Wu, Y.; Chen, C. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coord. Chem. Rev. 2017, 333, 57–70. [Google Scholar] [CrossRef]
- Wu, L.; Xie, Z.; Lu, L.; Zhao, J.; Wang, Y.; Jiang, X.; Ge, Y.; Zhang, F.; Lu, S.; Guo, Z.; et al. Few-Layer Tin Sulfide: A Promising Black-Phosphorus-Analogue 2D Material with Exceptionally Large Nonlinear Optical Response, High Stability, and Applications in All-Optical Switching and Wavelength Conversion. Adv. Opt. Mater. 2018, 6, 1700985. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Zhang, W.-X.; Xu, A.-W. Synthesis and characterization of single-crystal Sb2S3 nanotubes via an EDTA-assisted hydrothermal route. Mater. Chem. Phys. 2010, 123, 236–240. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, Y.; Xue, H.; Liu, W.; Yi, Z.; Chang, L.; Wang, L. Multifunctional sulfur-mediated strategy enabling fast-charging Sb2S3 micro-package anode for lithium-ion storage. J. Mater. Chem. A 2021, 9, 7838–7847. [Google Scholar] [CrossRef]
- Li, C.; Shi, G.; Song, Y.; Zhang, X.; Guang, S.; Xu, H. Third-order nonlinear optical properties of Bi2S3 and Sb2S3 nanorods studied by the Z-scan technique. J. Phys. Chem. Solids 2008, 69, 1829–1834. [Google Scholar] [CrossRef]
- Cox, J.D.; Javier Garcia de Abajo, F. Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat. Commun. 2014, 5, 5725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Liu, N.; Wu, D.; Tao, W.; Xu, F.; Jiang, K. Graphene–CdS composite, synthesis and enhanced photocatalytic activity. Appl. Surf. Sci. 2012, 258, 2473–2478. [Google Scholar] [CrossRef]
- Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998. [Google Scholar] [CrossRef]
- Gao, L.; Ma, J.; Zheng, J. Solvothermal Synthesis of Sb2S3-Graphene Oxide Nanocomposite for Electrochemical Detection of Dopamine. J. Electrochem. Soc. 2020, 167, 107503. [Google Scholar] [CrossRef]
- Tao, W.; Wang, J.; Wu, D.; Chang, J.; Wang, F.; Gao, Z.; Xu, F.; Jiang, K. Solvothermal synthesis of antimony sulfide dendrites for electrochemical detection of dopamine. Dalton Trans. 2013, 42, 11411–11417. [Google Scholar] [CrossRef]
- Zhu, Q.A.; Gong, M.; Zhang, C.; Yong, G.B.; Xiang, S. Preparation of Sb2S3 nanomaterials with different morphologies via a refluxing approach. J. Cryst. Growth 2009, 311, 3651–3655. [Google Scholar] [CrossRef]
- Tao, W.; Chang, J.; Wu, D.; Gao, Z.; Duan, X.; Xu, F.; Jiang, K. Solvothermal synthesis of graphene-Sb2S3 composite and the degradation activity under visible light. Mater. Res. Bull. 2013, 48, 538–543. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 41, 380–386. [Google Scholar] [CrossRef]
- Sharifuzzaman, M.; Barman, S.C.; Rahman, M.T.; Zahed, M.A.; Xuan, X.; Park, J.Y. Green Synthesis and Layer-by-Layer Assembly of Amino-Functionalized Graphene Oxide/Carboxylic Surface Modified Trimetallic Nanoparticles Nanocomposite for Label-Free Electrochemical Biosensing. J. Electrochem. Soc. 2019, 166, B983–B993. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, W.; Han, D.; Gan, S.; Dong, X.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773. [Google Scholar] [CrossRef]
- Wu, J.B.; Lin, M.L.; Cong, X.; Liu, H.N.; Tan, P.H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 321–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yogesh, G.K.; Shuaib, E.P.; Roopmani, P.; Gumpu, M.B.; Krishnan, U.M.; Sastikumar, D. Synthesis, characterization and bioimaging application of laser-ablated graphene-oxide nanoparticles (nGOs). Diam. Relat. Mater. 2020, 104, 107733. [Google Scholar] [CrossRef]
- Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Zhao, Y.; Liu, S.; Korzeniewski, C.L.; Wang, S.; Fan, Z. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Interfaces 2012, 4, 3944–3950. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Das, R.; Sahoo, P.K. Defect-assisted saturable absorption characteristics in Mn doped ZnO nano-rods. RSC Adv. 2015, 5, 88767–88772. [Google Scholar] [CrossRef]
- Han, Q.; Chen, J.; Yang, X.; Lu, L.; Wang, X. Preparation of uniform Bi2S3 nanorods using xanthate complexes of bismuth(III). J. Phys. Chem. C 2007, 111, 14072–14077. [Google Scholar] [CrossRef]
- Szczesny, R.; Scigala, A.; Derkowska-Zielinska, B.; Skowronski, L.; Cassagne, C.; Boudebs, G.; Viter, R.; Szlyk, E. Synthesis, Optical, and Morphological Studies of ZnO Powders and Thin Films Fabricated by Wet Chemical Methods. Materials 2020, 13, 2559. [Google Scholar] [CrossRef]
- Xu, J.P.; Zhang, R.J.; Zhang, Y.; Wang, Z.Y.; Chen, L.; Huang, Q.H.; Lu, H.L.; Wang, S.Y.; Zheng, Y.X.; Chen, L.Y. The thickness-dependent band gap and defect features of ultrathin ZrO2 films studied by spectroscopic ellipsometry. Phys. Chem. Chem. Phys. 2016, 18, 3316–3321. [Google Scholar] [CrossRef]
- Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16995–17000. [Google Scholar] [CrossRef]
- Wang, H.; Ciret, C.; Godet, J.L.; Cassagne, C.; Boudebs, G. Measurement of the optical nonlinearities of water, ethanol and tetrahydrofuran (THF) at 355 nm. Appl. Phys. B 2018, 124, 95–100. [Google Scholar] [CrossRef]
- Wang, H.; Ciret, C.; Cassagne, C.; Boudebs, G. Measurement of the third order optical nonlinearities of graphene quantum dots in water at 355 nm, 532 nm and 1064 nm. Opt. Mater. Express 2019, 9, 339–351. [Google Scholar] [CrossRef]
- Chen, C.; Dong, N.; Huang, J.; Chen, X.; Wang, H.; Wang, Z.; Wang, J. Nonlinear Optical Properties and Ultrafast Carrier Dynamics of 2D Indium Selenide Nanosheets. Adv. Opt. Mater. 2021, 9, 2101432. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, L.; Zhu, B.; Zhang, Y.; Gu, Y. Regulation and enhancement of the nonlinear optical properties of reduced graphene oxide through Au nanospheres and Au@CdS core-shells. Opt. Express 2021, 29, 9454–9464. [Google Scholar] [CrossRef]
- Zeng, H.; Han, J.; Qian, D.; Gu, Y. Third-order nonlinear optical properties of multiwalled carbon nanotubes modified by CdS nanoparticles. Optik 2014, 125, 6558–6561. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.-H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhu, B.; Cao, F.; Wu, J.; Hao, Y.; Gu, Y. Enhanced nonlinear optical properties of the Cu2Se/RGO composites. Results Phys. 2021, 27, 104568. [Google Scholar] [CrossRef]
- Arab, S.; Anderson, P.D.; Yao, M.; Zhou, C.; Dapkus, P.D.; Povinelli, M.L.; Cronin, S.B. Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation. Nano Res. 2014, 7, 1146–1153. [Google Scholar] [CrossRef]
- Wang, K.; Feng, Y.; Chang, C.; Zhan, J.; Wang, C.; Zhao, Q.; Coleman, J.N.; Zhang, L.; Blau, W.J.; Wang, J. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale 2014, 6, 10530–10535. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.F.; Wang, Y.-H.; Li, P.L.; Wu, X.; Shang, M.; Xiong, Z.Z.; Zhang, H.J.; Liang, F.; Xie, Y.-F.; Wang, J. Enhanced nonlinear optical behavior of graphene-CuO nanocomposites investigated by Z-scan technique. J. Alloy. Compd. 2019, 777, 759–766. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, B.; He, W.; Xiang, Y.; Zheng, Z. Mechanistic insights into the photoinduced charge carrier dynamics of BiOBr/CdS nanosheet heterojunctions for photovoltaic application. Nanoscale 2017, 9, 3180–3187. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Cheng, B.; Wu, N.; Meng, A.; Cao, S.; Yu, J. Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants. Appl. Catal. B Environ. 2016, 181, 71–78. [Google Scholar] [CrossRef]
Sample | β (10−11 m/w) | γ (10−18 m2/w) | (10−12 esu) | (10−12 esu) | (10−12 esu) |
---|---|---|---|---|---|
RGO | −2.17 | 0.03 | −1.36 | 0.04 | 1.36 |
Sb2S3 | 2.60 | 2.42 | 1.96 | 4.31 | 4.73 |
G1 | −1.32 | 0.39 | −0.99 | 0.69 | 1.21 |
G2 | −2.11 | 0.68 | −1.59 | 1.21 | 2.00 |
G3 | −4.22 | 4.51 | −3.18 | 8.03 | 8.63 |
G4 | −2.42 | 2.07 | −1.82 | 3.69 | 4.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yuan, Y.; Wu, J.; Zhu, B.; Gu, Y. The Third-Order Nonlinear Optical Properties of Sb2S3/RGO Nanocomposites. Photonics 2022, 9, 213. https://doi.org/10.3390/photonics9040213
Li L, Yuan Y, Wu J, Zhu B, Gu Y. The Third-Order Nonlinear Optical Properties of Sb2S3/RGO Nanocomposites. Photonics. 2022; 9(4):213. https://doi.org/10.3390/photonics9040213
Chicago/Turabian StyleLi, Liushuang, Ye Yuan, Jiawen Wu, Baohua Zhu, and Yuzong Gu. 2022. "The Third-Order Nonlinear Optical Properties of Sb2S3/RGO Nanocomposites" Photonics 9, no. 4: 213. https://doi.org/10.3390/photonics9040213
APA StyleLi, L., Yuan, Y., Wu, J., Zhu, B., & Gu, Y. (2022). The Third-Order Nonlinear Optical Properties of Sb2S3/RGO Nanocomposites. Photonics, 9(4), 213. https://doi.org/10.3390/photonics9040213