Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Structural and Optical Characterization
2.3. Numerical Simulation
2.4. Multipole Decomposition
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, M.A.; Fialkow, D.; Wu, T.; Park, K.; Leng, H.; Kropp, J.A.; Gougousi, T.; Lalanne, P.; Pelton, M.; Raschke, M.B. Nano-Cavity QED with Tunable Nano-Tip Interaction. Adv. Quantum Technol. 2020, 3, 1900087. [Google Scholar] [CrossRef]
- Juraschek, D.M.; Neuman, T.; Flick, J.; Narang, P. Cavity Control of Nonlinear Phononics. Phys. Rev. Res. 2021, 3, L032046. [Google Scholar] [CrossRef]
- Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Odebo Länk, N.; Dmitriev, A.; Vavassori, P.; Shvets, I.V.; Käll, M. Polarization Conversion-Based Molecular Sensing Using Anisotropic Plasmonic Metasurfaces. Nanoscale 2016, 8, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, M.; Bochenkov, V.E.; Ogaki, R.; Sutherland, D.S. Onset of Bonding Plasmon Hybridization Preceded by Gap Modes in Dielectric Splitting of Metal Disks. Nano Lett. 2013, 13, 6033–6039. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Zhao, Y.; Isoniemi, T.; Iarossi, M.; Parracino, A.; Strangi, G.; De Angelis, F. Hyperbolic Meta-Antennas Enable Full Control of Scattering and Absorption of Light. Nano Lett. 2019, 19, 1851–1859. [Google Scholar] [CrossRef]
- Verre, R.; Yang, Z.J.; Shegai, T.; Käll, M. Optical Magnetism and Plasmonic Fano Resonances in Metal-Insulator-Metal Oligomers. Nano Lett. 2015, 15, 1952–1958. [Google Scholar] [CrossRef]
- Ardini, M.; Huang, J.-A.; Sánchez, C.S.; Mousavi, M.Z.; Caprettini, V.; Maccaferri, N.; Melle, G.; Bruno, G.; Pasquale, L.; Garoli, D.; et al. Live Intracellular Biorthogonal Imaging by Surface Enhanced Raman Spectroscopy Using Alkyne-Silver Nanoparticles Clusters. Sci. Rep. 2018, 8, 12652. [Google Scholar] [CrossRef]
- Barreda, A.I.; Zapata-Herrera, M.; Palstra, I.M.; Mercadé, L.; Aizpurua, J.; Koenderink, A.F.; Martínez, A. Hybrid Photonic-Plasmonic Cavities Based on the Nanoparticle-on-a-Mirror Configuration. Photonics Res. 2021, 9, 2398. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically Resonant Dielectric Nanostructures. Science. 2016, 354, aag2472. [Google Scholar] [CrossRef] [Green Version]
- Barreda, Á.; Vitale, F.; Minovich, A.E.; Ronning, C.; Staude, I. Applications of Hybrid Metal-Dielectric Nanostructures: State of the Art. Adv. Photonics Res. 2021, 2100286. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-Dielectric Metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Albella, P.; Poyli, M.A.; Schmidt, M.K.; Maier, S.A.; Moreno, F.; Sáenz, J.J.; Aizpurua, J. Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. J. Phys. Chem. C 2013, 117, 13573–13584. [Google Scholar] [CrossRef] [Green Version]
- Bakker, R.M.; Permyakov, D.; Yu, Y.F.; Markovich, D.; Paniagua-Domínguez, R.; Gonzaga, L.; Samusev, A.; Kivshar, Y.; Luk’yanchuk, B.; Kuznetsov, A.I. Magnetic and Electric Hotspots with Silicon Nanodimers. Nano Lett. 2015, 15, 2137–2142. [Google Scholar] [CrossRef] [PubMed]
- Razdolski, I.; Chen, Y.; Giles, A.J.; Gewinner, S.; Schöllkopf, W.; Hong, M.; Wolf, M.; Giannini, V.; Caldwell, J.D.; Maier, S.A.; et al. Resonant Enhancement of Second-Harmonic Generation in the Mid-Infrared Using Localized Surface Phonon Polaritons in Subdiffractional Nanostructures. Nano Lett. 2016, 16, 6954–6959. [Google Scholar] [CrossRef] [PubMed]
- Kilic, U.; Hilfiker, M.; Ruder, A.; Feder, R.; Schubert, E.; Schubert, M.; Argyropoulos, C. Broadband Enhanced Chirality with Tunable Response in Hybrid Plasmonic Helical Metamaterials. Adv. Funct. Mater. 2021, 31, 2010329. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. All-Dielectric Optical Nanoantennas. Opt. Express 2012, 20, 20599. [Google Scholar] [CrossRef]
- Schmidt, M.K.; Esteban, R.; Sáenz, J.J.; Suárez-Lacalle, I.; Mackowski, S.; Aizpurua, J. Dielectric Antennas—A Suitable Platform for Controlling Magnetic Dipolar Emission: Errata. Opt. Express 2012, 20, 18609. [Google Scholar] [CrossRef]
- Koshelev, K.; Kivshar, Y. Dielectric Resonant Metaphotonics. ACS Photonics 2021, 8, 102–112. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces. Optica 2017, 4, 139. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Lan, S.; Miroshnichenko, A.E. Nanoscale Optical Display and Sensing Based on the Modification of Fano Lineshape. Adv. Opt. Mater. 2020, 8, 2000489. [Google Scholar] [CrossRef]
- Liu, T.; Xu, R.; Yu, P.; Wang, Z.; Takahara, J. Multipole and Multimode Engineering in Mie Resonance-Based Metastructures. Nanophotonics 2020, 9, 1115–1137. [Google Scholar] [CrossRef]
- Maimaiti, A.; Patra, P.P.; Jones, S.; Antosiewicz, T.J.; Verre, R. Low-Loss Hybrid High-Index Dielectric Particles on a Mirror for Extreme Light Confinement. Adv. Opt. Mater. 2020, 8, 1901820. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Y.; Zhang, P.; Wu, Y.; Vallée, R.A.L.; Wu, S.; Liu, X. Resonant Scattering Manipulation of Dielectric Nanoparticles. Adv. Opt. Mater. 2021, 9, 2100112. [Google Scholar] [CrossRef]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Fu, Y.H.; Zhang, J.; Luk’yanchuk, B. Magnetic Light. Sci. Rep. 2012, 2, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Wu, X.; Liu, Z.; Zhao, G.; Guo, X.; Meng, Y.; Deng, L.; Chen, W.; Tian, Y.; Yang, J. Tunable Fano Resonance in Mutually Coupled Micro-Ring Resonators. Appl. Phys. Lett. 2017, 111, 091901. [Google Scholar] [CrossRef]
- Wang, H.; Ke, Y.; Xu, N.; Zhan, R.; Zheng, Z.; Wen, J.; Yan, J.; Liu, P.; Chen, J.; She, J.; et al. Resonance Coupling in Silicon Nanosphere-J-Aggregate Heterostructures. Nano Lett. 2016, 16, 6886–6895. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wen, J.; Wang, W.; Xu, N.; Liu, P.; Yan, J.; Chen, H.; Deng, S. Resonance Coupling in Heterostructures Composed of Silicon Nanosphere and Monolayer WS2: A Magnetic-Dipole-Mediated Energy Transfer Process. ACS Nano 2019, 13, 1739–1750. [Google Scholar] [CrossRef]
- Yan, J.; Liu, P.; Lin, Z.; Wang, H.; Chen, H.; Wang, C.; Yang, G. Directional Fano Resonance in a Silicon Nanosphere Dimer. ACS Nano 2015, 9, 2968–2980. [Google Scholar] [CrossRef]
- Miroshnichenko, A.E.; Evlyukhin, A.B.; Kivshar, Y.S.; Chichkov, B.N. Substrate-Induced Resonant Magnetoelectric Effects for Dielectric Nanoparticles. ACS Photonics 2015, 2, 1423–1428. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.; Zhang, W. Sub-50 nm Control of Light at 405 Nm with Planar Si Nanolens. Opt. Express 2022, 30, 9904. [Google Scholar] [CrossRef]
- Zywietz, U.; Schmidt, M.K.; Evlyukhin, A.B.; Reinhardt, C.; Aizpurua, J.; Chichkov, B.N. Electromagnetic Resonances of Silicon Nanoparticle Dimers in the Visible. ACS Photonics 2015, 2, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Caldarola, M.; Albella, P.; Cortés, E.; Rahmani, M.; Roschuk, T.; Grinblat, G.; Oulton, R.F.; Bragas, A.V.; Maier, S.A. Non-Plasmonic Nanoantennas for Surface Enhanced Spectroscopies with Ultra-Low Heat Conversion. Nat. Commun. 2015, 6, 7915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regmi, R.; Berthelot, J.; Winkler, P.M.; Mivelle, M.; Proust, J.; Bedu, F.; Ozerov, I.; Begou, T.; Lumeau, J.; Rigneault, H.; et al. All-Dielectric Silicon Nanogap Antennas to Enhance the Fluorescence of Single Molecules. Nano Lett. 2016, 16, 5143–5151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, Y.; Liu, S.; Zhang, Y.; Liu, Y.; Yang, X.; Lou, S.; Wu, E.; Wu, B.; Zhang, X.; Jin, Q. Distance-Dependent Plasmon-Enhanced Fluorescence of Submonolayer Rhodamine 6G by Gold Nanoparticles. Nanoscale Res. Lett. 2021, 16, 90. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Gao, S.; Zhu, L.; Liao, F.; Yang, L.; Shao, M. Tunable Fluorescence Enhancement Based on Bandgap-Adjustable 3D Fe3O4 Nanoparticles. Nanotechnology 2016, 27, 245709. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Sharbirin, A.S.; Lee, Y.; Kim, W.B.; Kim, T.S.; Cho, K.; Kang, K.; Jung, H.S.; Kim, J. Measurement of Quantum Yields of Monolayer TMDs Using Dye-Dispersed PMMA Thin Films. Nanomaterials 2020, 10, 1032. [Google Scholar] [CrossRef]
- Fu, Y.H.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Yu, Y.F.; Luk’yanchuk, B. Directional Visible Light Scattering by Silicon Nanoparticles. Nat. Commun. 2013, 4, 1527. [Google Scholar] [CrossRef] [Green Version]
- Zywietz, U.; Evlyukhin, A.B.; Reinhardt, C.; Chichkov, B.N. Laser Printing of Silicon Nanoparticles with Resonant Optical Electric and Magnetic Responses. Nat. Commun. 2014, 5, 3402. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Alaee, R.; Rockstuhl, C.; Fernandez-Corbaton, I. An Electromagnetic Multipole Expansion beyond the Long-Wavelength Approximation. Opt. Commun. 2018, 407, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the Mechanisms of Large Purcell Enhancement in Plasmonic Nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Benz, F.; Schmidt, M.K.; Dreismann, A.; Chikkaraddy, R.; Zhang, Y.; Demetriadou, A.; Carnegie, C.; Ohadi, H.; Nijs, B.D.; Esteban, R.; et al. Single-Molecule Optomechanics in “Picocavities”. Science 2016, 354, 726–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatopoulou, P.E.; Tserkezis, C. Role of Emitter Position and Orientation on Silicon Nanoparticle-Enhanced Fluorescence. OSA Contin. 2021, 4, 918. [Google Scholar] [CrossRef]
- Delga, A.; Feist, J.; Bravo-Abad, J.; Garcia-Vidal, F.J. Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching. Phys. Rev. Lett. 2014, 112, 253601. [Google Scholar] [CrossRef] [PubMed]
- Kongsuwan, N.; Demetriadou, A.; Chikkaraddy, R.; Benz, F.; Turek, V.A.; Keyser, U.F.; Baumberg, J.J.; Hess, O. Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities. ACS Photonics 2018, 5, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, H.; Fujii, M. Magnetic Purcell Enhancement by Magnetic Quadrupole Resonance of Dielectric Nanosphere Antenna. ACS Photonics 2021, 8, 1794–1800. [Google Scholar] [CrossRef]
Sample | Enhancement Factors | |
---|---|---|
// | ⊥ | |
[email protected]&77.7 | 2.46 | 1.02 |
[email protected]&95.9 | 2.09 | 1.58 |
[email protected]&157.3 | 2.32 | 1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Bian, Y.; Zhang, Y.; Zhang, S.; Zhang, X.; Wu, B.; Jin, Q.; Wu, E. Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement. Photonics 2022, 9, 267. https://doi.org/10.3390/photonics9040267
Pan C, Bian Y, Zhang Y, Zhang S, Zhang X, Wu B, Jin Q, Wu E. Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement. Photonics. 2022; 9(4):267. https://doi.org/10.3390/photonics9040267
Chicago/Turabian StylePan, Chengda, Yajie Bian, Yuchan Zhang, Shiyu Zhang, Xiaolei Zhang, Botao Wu, Qingyuan Jin, and E Wu. 2022. "Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement" Photonics 9, no. 4: 267. https://doi.org/10.3390/photonics9040267
APA StylePan, C., Bian, Y., Zhang, Y., Zhang, S., Zhang, X., Wu, B., Jin, Q., & Wu, E. (2022). Flexible Silicon Dimer Nanocavity with Electric and Magnetic Enhancement. Photonics, 9(4), 267. https://doi.org/10.3390/photonics9040267