Research of Gate-Tunable Phase Modulation Metasurfaces Based on Epsilon-Near-Zero Property of Indium-Tin-Oxide
Abstract
:1. Introduction
2. Theoretical Models and Design Considerations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z. Gated Graphene Island-Enabled Tunable Charge Transfer Plasmon Terahertz Metamodulator. Nanoscale 2019, 11, 8091–8095. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, F.; Chang, S. Recent Progress on Graphene-Functionalized Metasurfaces for Tunable Phase and Polarization Control. Nanomaterials 2019, 9, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Feng, W.; Long, Y.; Guo, S.; Liang, H.; Qiu, Z.; Fu, X.; Li, J. A Metasurface Beam Combiner Based on the Control of Angular Response. Photonics 2021, 8, 489. [Google Scholar] [CrossRef]
- Zhou, C.; Zhen, M.; Lu, P.; Teng, S. Compound Vector Light Generator Based on a Metasurface. Photonics 2021, 8, 243. [Google Scholar] [CrossRef]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar Photonics with Metasurfaces. Science 2013, 339, 1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Pu, M.; Guo, Y.; Li, X.; Ma, X. Electromagnetic Architectures: Structures, Properties, Functions and Their Intrinsic Relationships in Subwavelength Optics and Electromagnetics. Adv. Photonics Res. 2021, 2, 2100023. [Google Scholar] [CrossRef]
- Yang, X.; Hu, C.; Deng, H.; Rosenmann, D.; Czaplewski, D.A.; Gao, J. Experimental Demonstration of Near-Infrared Epsilon-near-Zero Multilayer Metamaterial Slabs. Opt. Express 2013, 21, 23631–23639. [Google Scholar] [CrossRef]
- Pang, K.; Alam, M.Z.; Zhou, Y.; Liu, C.; Reshef, O.; Manukyan, K.; Voegtle, M.; Pennathur, A.; Tseng, C.; Su, X.; et al. Adiabatic Frequency Conversion Using a Time-Varying Epsilon-Near-Zero Metasurface. Nano Lett. 2021, 21, 5907–5913. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F. Holographic optical metasurfaces: A review of current progress. Rep. Prog. Phys. 2015, 78, 024401. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Cui, T.J.; Martin-Cano, D.; Garcia-Vidal, F.J. Conformal Surface Plasmons Propagating on Ultrathin and Flexible Films. Proc. Natl. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Lin, H.; Lin, S.; Wu, J.; Li, W.; Meng, F.; Yang, Y.; Huang, X.; Jia, B.; Kivshar, Y. Hybrid Anisotropic Plasmonic Metasurfaces with Multiple Resonances of Focused Light Beams. Nano Lett. 2021, 21, 8917–8923. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Liang, Y.; Feng, L.; Zhang, H.; Liu, M.; Xu, T. Low-Cost and High Sensitivity Glucose Sandwich Detection Using a Plasmonic Nanodisk Metasurface. Nanoscale 2020, 12, 10809–10815. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y.; et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.Q.; Zhu, W.M.; Tsai, D.P.; Zheludev, N. Micromachined tunable metamaterials: A review. J. Opt. 2012, 14, 114009. [Google Scholar] [CrossRef] [Green Version]
- Sautter, J.; Staude, I.; Decker, M.; Rusak, E.; Neshev, D.N.; Brener, I.; Kivshar, Y.S. Active Tuning of All-Dielectric Metasurfaces. ACS Nano 2015, 9, 4308–4315. [Google Scholar] [CrossRef]
- Waters, R.F.; Hobson, P.A.; MacDonald, K.F.; Zheludev, N.I. Optically switchable photonic metasurfaces. Appl. Phys. Lett. 2015, 107, 917. [Google Scholar] [CrossRef] [Green Version]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Babicheva, V.E.; Boltasseva, A.; Lavrinenko, A. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 2015, 4, 436. [Google Scholar] [CrossRef]
- Melikyan, A.; Lindenmann, N.; Walheim, S.; Leufke, P.M.; Ulrich, S.; Ye, J.; Vincze, P.; Hahn, H.; Schimmel, T.; Koos, C.; et al. Surface plasmon polariton absorption modulator. Opt. Express 2011, 19, 8855–8869. [Google Scholar] [CrossRef] [PubMed]
- Oleksandr, B.; Nina, P.; Malgosia, K.; Nikolay, I.; Fedotov, V.A. Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch. Adv. Opt. Mater. 2015, 3, 674–679. [Google Scholar]
- Forouzmand, A.; Mosallaei, H. All-Dielectric C-Shaped Nanoantennas for Light Manipulation: Tailoring Both Magnetic and Electric Resonances to the Desire. Adv. Opt. Mater. 2017, 5, 1700147. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Liu, G.-Q.; Liu, X.-S.; Zhou, H.-Q.; Gu, G. Multispectral Broadband Light Transparency of a Seamless Metal Film Coated with Plasmonic Crystals. Plasmonics 2014, 9, 615–622. [Google Scholar] [CrossRef]
- Sorger, V.J.; Lanzillotti-Kimura, N.D.; Ma, R.-M.; Zhang, X. Ultra-Compact Silicon Nanophotonic Modulator with Broadband Response. Nanophotonics 2012, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kang, J.-H.; Liu, X.; Brongersma, M.L. Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers. Sci. Rep. 2015, 5, 15754. [Google Scholar] [CrossRef] [Green Version]
- Tahersima, M.H.; Ma, Z.; Gui, Y.; Miscuglio, M.; Sun, S.; Amin, R.; Dalir, H.; Sorger, V.J. Coupling-Controlled Dual ITO Layer Electro-Optic Modulator in Silicon Photonics. arXiv 2018, arXiv:arXiv1812.11458. [Google Scholar]
- Amin, R.; Maiti, R.; Carfano, C.; Ma, Z.; Tahersima, M.H.; Lilach, Y.; Ratnayake, D.; Dalir, H.; Sorger, V.J. 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics 2018, 3, 126104. [Google Scholar] [CrossRef]
- Feigenbaum, E.; Diest, K.; Atwater, H.A. Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies. Nano Lett. 2010, 10, 2111–2116. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, D.L.; Sivasankaran, K. Nitrogen-doped NDR behavior of double-gate graphene field-effect transistor. Superlattices Microstruct. 2019, 136, 106308.1–106308.8. [Google Scholar] [CrossRef]
- Schon, J.H. Field-Effect Modulation of the Conductance of Single Molecules. Science 2001, 294, 2138–2140. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, B.; Yuan, S.; Yang, Y. New super junction LDMOS with surface and bulk electric field modulation by buffered step doping and multi floating buried layers—ScienceDirect. Superlattices Microstruct. 2017, 111, 221–229. [Google Scholar] [CrossRef]
- Dionne, J.A.; Diest, K.; Sweatlock, L.A.; Atwater, H.A. PlasMOStor: A Metal-Oxide-Si Field-Effect Plasmonic Modulator. Nano Lett. 2009, 9, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Sherrott, M.C.; Hon, P.W.C.; Fountaine, K.T.; Garcia, J.C.; Ponti, S.M.; Brar, V.W.; Sweatlock, L.A.; Atwater, H.A. Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017, 17, 3027–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.-W.; Lee, H.W.H.; Sokhoyan, R.; Pala, R.A.; Thyagarajan, K.; Han, S.; Tsai, D.P.; Atwater, H.A. Gate-Tunable Conducting Oxide Metasurfaces. Nano Lett. 2016, 16, 5319. [Google Scholar] [CrossRef] [Green Version]
- Amin, R.; George, J.K.; Sun, S.; de Lima, T.F.; Tait, A.N.; Khurgin, J.B.; Miscuglio, M.; Shastri, B.J.; Prucnal, P.R.; El-Ghazawi, T.; et al. ITO-based Electro-absorption Modulator for Photonic Neural Activation Function. APL Mater. 2019, 7, 081112. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, R.; Abiri, B.; Khachaturian, A.; Hajimiri, A. High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture. Opt. Express 2018, 26, 29983. [Google Scholar] [CrossRef]
- Zhewei, W.; Chaonan, C.; Ke, W.; Chong, H.; Ye, H. Transparent Conductive Oxides and Their Applications in Near Infrared Plasmonics. Phys. Status Solidi (A) 2019, 216, 1700794. [Google Scholar]
- Fei, Y.; Shim, E.; Zhu, A.Y.; Zhu, H.; Reed, J.C.; Cubukcu, E. Voltage tuning of plasmonic absorbers by indium tin oxide. Appl. Phys. Lett. 2013, 102, 1448. [Google Scholar]
- Campbell, S.D.; Ziolkowski, R.; Cao, J.; Laref, S.; Muralidharan, K.; Deymier, P. Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces. Appl. Phys. Lett. 2013, 103, 075120. [Google Scholar] [CrossRef]
- Lynch, D.W. Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals. Handb. Opt. Constants Solids 1997, 1, 275–367. [Google Scholar]
- Vexler, M.I.; Tyaginov, S.E.; Shulekin, A.F.; Grekhov, I.V. Current-voltage characteristics of Al/SiO2/p-Si MOS tunnel diodes with a spatially nonuniform oxide thickness. Semiconductors 2006, 40, 1109–1115. [Google Scholar] [CrossRef]
- Li, S.-Q.; Sakoda, K.; Ketterson, J.B.; Chang, R.P.H. Broadband Resonances in ITO Nanorod Arrays. Eprint Arxiv 2015, 63, 694–698. [Google Scholar]
- Siahkal-Mahalle, B.H.; Abedi, K. The Effect of Carrier Distribution on Performance of ENZ-Based Electro-Absorption Modulator. Plasmonics 2020, 15, 1689–1697. [Google Scholar] [CrossRef]
- Etinger-Geller, Y.; Zoubenko, E.; Baskin, M.; Kornblum, L.; Pokroy, B. Thickness Dependence of the Physical Properties of Atomic-Layer Deposited Al2O3. J. Appl. Phys. 2019, 125, 185302. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Chen, Q.; Liu, W.; Song, S. Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO. Plasmonics 2016, 11, 1087–1092. [Google Scholar] [CrossRef]
- Pshenichnyuk, I.A.; Kosolobov, S.S.; Drachev, V.P. Fine-Tuning of the Electro-Optical Switching Behavior in Indium Tin Oxide. Phys. Rev. B. 2021, 103, 115404. [Google Scholar] [CrossRef]
- Nemati, A.; Wang, Q.; Ang, N.S.S.; Hong, M.H.; Teng, J. Ultra-high extinction-ratio light modulation by electrically tunable metasurface using dual epsilon-near-zero resonances. Opto-Electron. Adv. 2021, 4, 200088-1–200088-11. [Google Scholar] [CrossRef]
- Horikawa, K.; Nakasuga, Y. Self-heterodyning optical waveguide beam forming and steering network integrated on Lithium Niobate substrate. Microw. Theory Tech. IEEE Trans. 1995, 43, 2395–2401. [Google Scholar] [CrossRef]
- Ding, K.; Shen, Y.; Ng, J.; Zhou, L. Equivalent-medium theory for metamaterials made by planar electronic materials. Epl 2013, 102, 28005. [Google Scholar] [CrossRef]
- Zhu, B.; Ren, G.; Zheng, S.; Lin, Z.; Jian, S. Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express 2013, 21, 17089–17096. [Google Scholar] [CrossRef] [PubMed]
- Goutzoulis, A.P.; Davies, D.K.; Zomp, J.M. Hybrid electronic fiber optic wavelength-multiplexed system for true time delay steering of phased array antennas. Opt. Express 2005, 31, 2312–2322. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Cheng, Q.; Guo, S.; Li, Z. Research of Gate-Tunable Phase Modulation Metasurfaces Based on Epsilon-Near-Zero Property of Indium-Tin-Oxide. Photonics 2022, 9, 323. https://doi.org/10.3390/photonics9050323
Li X, Cheng Q, Guo S, Li Z. Research of Gate-Tunable Phase Modulation Metasurfaces Based on Epsilon-Near-Zero Property of Indium-Tin-Oxide. Photonics. 2022; 9(5):323. https://doi.org/10.3390/photonics9050323
Chicago/Turabian StyleLi, Xin, Qiufan Cheng, Shiliang Guo, and Zhiquan Li. 2022. "Research of Gate-Tunable Phase Modulation Metasurfaces Based on Epsilon-Near-Zero Property of Indium-Tin-Oxide" Photonics 9, no. 5: 323. https://doi.org/10.3390/photonics9050323
APA StyleLi, X., Cheng, Q., Guo, S., & Li, Z. (2022). Research of Gate-Tunable Phase Modulation Metasurfaces Based on Epsilon-Near-Zero Property of Indium-Tin-Oxide. Photonics, 9(5), 323. https://doi.org/10.3390/photonics9050323