Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters
Abstract
:1. Introduction
2. Methods
2.1. System Setup
2.2. Distortion Correction
2.3. IDa-OCTA Algorithm
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumagai, Y.; Toi, M.; Inoue, H. Dynamism of tumour vasculature in the early phase of cancer progression: Outcomes from oesophageal cancer research. Lancet Oncol. 2002, 3, 604–610. [Google Scholar] [CrossRef]
- Sharma, P.; Bansal, A.; Mathur, S.; Wani, S.; Cherian, R.; McGregor, D.; Higbee, A.; Hall, S.; Weston, A. The utility of a novel narrow band imaging endoscopy system in patients with Barrett’s esophagus. Gastrointest. Endosc. 2006, 64, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.; Lauwers, G.Y.; Chen, Y.; Dekker, E.; Fockens, P.; Sharma, P.; Meining, A. Miami classification for probe-based confocal laser endomicroscopy. Endoscopy 2011, 43, 882–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.K.; Jacques, S.L.; Ma, Z.; Hurst, S.; Hanson, S.R.; Gruber, A. Three dimensional optical angiography. Opt. Express 2007, 15, 4083–4097. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Fu, Y.; Chen, R.; Yang, S.; Qiu, H.; Wu, X.; Zhao, S.; Gu, Y.; Li, P. SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model. IEEE Trans. Med. Imaging 2019, 38, 2695–2704. [Google Scholar] [CrossRef] [Green Version]
- Skalet, A.H.; Li, Y.; Lu, C.D.; Jia, Y.; Lee, B.; Husvogt, L.; Maier, A.; Fujimoto, J.G.; Thomas, C.R.; Huang, D. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors. Ophthalmology 2017, 124, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, J.C.; Zeng, R.; Nagata, T.; Katz, R.; Mukai, S.; Miller, J.B. Detection of retinal microvascular changes in von Hippel-Lindau disease using optical coherence tomography angiography. PLoS ONE 2020, 15, e0229213. [Google Scholar] [CrossRef] [Green Version]
- Custo Greig, E.P.; Duker, J.S. Retinal hemangioblastoma vascular detail elucidated on swept source optical coherence tomography angiography. Am. J. Ophthalmo.l Case Rep. 2021, 21, 101005. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Ahsen, O.O.; Lee, H.-C.; Liang, K.; Figueiredo, M.; Tao, Y.K.; Giacomelli, M.G.; Potsaid, B.M.; Jayaraman, V.; Huang, Q.; et al. Endoscopic Optical Coherence Angiography Enables 3-Dimensional Visualization of Subsurface Microvasculature. Gastroenterology 2014, 147, 1219–1221. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Ahsen, O.O.; Liang, K.; Wang, Z.; Figueiredo, M.; Giacomelli, M.G.; Potsaid, B.; Huang, Q.; Mashimo, H.; Fujimoto, J.G. Endoscopic optical coherence tomography angiography microvascular features associated with dysplasia in Barrett’s esophagus (with video). Gastrointest. Endosc. 2017, 86, 476–484.e3. [Google Scholar] [CrossRef] [PubMed]
- Wurster, L.M.; Shah, R.N.; Placzek, F.; Kretschmer, S.; Niederleithner, M.; Ginner, L.; Ensher, J.; Minneman, M.P.; Hoover, E.E.; Zappe, H.; et al. Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe. J. Biophotonics 2019, 12, e201800382. [Google Scholar]
- Yao, L.; Li, H.; Liu, K.; Zhang, Z.; Li, P. Endoscopic optical coherence tomography angiography using inverse SNR-amplitude decorrelation features and electrothermal micro-electro-mechanical system raster scan. Quant. Imaging Med. Surg. 2022, 12, 3078–3091. [Google Scholar] [CrossRef]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications [Invited]. Biomed. Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.H.; Lee, H.C.; Ahsen, O.O.; Liang, K.; Giacomelli, M.G.; Potsaid, B.M.; Tao, Y.K.; Jayaraman, V.; Figueiredo, M.; Huang, Q.; et al. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology. Biomed. Opt. Express 2014, 5, 4387–4404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizu, Y.; Yatagai, T.; Awatsuji, Y.; Matoba, O.; Jayaraman, V.; Wang, Z.; Ahsen, O.O.; Liang, K.; Lee, H.-C.; Fujimoto, J.G. Endoscopic Optical Coherence Tomography and Angiography for Gastroenterology Applications. In Biomedical Imaging and Sensing Conference; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; p. 107110A. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Nguyen, T.; Potsaid, B.; Jayaraman, V.; Burgner, C.; Chen, S.; Li, J.; Liang, K.; Cable, A.; Traverso, G.; et al. Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes. Biomed. Opt. Express 2021, 12, 2384–2403. [Google Scholar] [CrossRef] [PubMed]
- Ahsen, O.O.; Lee, H.C.; Giacomelli, M.G.; Wang, Z.; Liang, K.; Tsai, T.H.; Potsaid, B.; Mashimo, H.; Fujimoto, J.G. Correction of rotational distortion for catheter-based en face OCT and OCT angiography. Opt. Lett. 2014, 39, 5973–5976. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.; Wang, Z.; Ahsen, O.O.; Lee, H.C.; Potsaid, B.M.; Jayaraman, V.; Cable, A.; Mashimo, H.; Li, X.; Fujimoto, J.G. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo. Optica 2018, 5, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Adnan, A.; Subhash, H.M.; Leahy, M.; Adlam, D. Developing cross-correlation as a method for microvessel imaging using clinical intravascular optical coherence tomography systems. Biomed. Opt. Express 2015, 6, 668–689. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Ahsen, O.O.; Liang, K.; Zhang, J.; Mashimo, H.; Fujimoto, J.G. Correction of circumferential and longitudinal motion distortion in high-speed catheter/endoscope-based optical coherence tomography. Biomed. Opt. Express 2021, 12, 226–246. [Google Scholar] [CrossRef]
- Joseph, S.; Rousseau, C.; Molly Subhash, H.; Leahy, M.; Adlam, D. Variation in Cross-Correlation as a discriminator for microvessel imaging using clinical intravascular Optical Coherence Tomography systems. Prog. Biomed. Opt. Imaging-Proc. SPIE 2014, 8934, 181–187. [Google Scholar] [CrossRef]
- Kang, W.; Wang, H.; Wang, Z.; Jenkins, M.W.; Isenberg, G.A.; Chak, A.; Rollins, A.M. Motion artifacts associated with in vivo endoscopic OCT images of the esophagus. Opt. Express 2011, 19, 20722–20735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.C.; Ahsen, O.O.; Liang, K.; Wang, Z.; Cleveland, C.; Booth, L.; Potsaid, B.; Jayaraman, V.; Cable, A.E.; Mashimo, H.; et al. Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter. Biomed. Opt. Express 2016, 7, 2927–2942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uribe-Patarroyo, N.; Bouma, B.E. Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation. Opt. Lett. 2015, 40, 5518–5521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Stein, K.U.; Gonglewski, J.D.; Huebner, C.S. Local motion compensation in image sequences degraded by atmospheric turbulence: A comparative analysis of optical flow vs. block matching methods. In Proceedings of the Optics in Atmospheric Propagation and Adaptive Systems XIX, Edinburgh, UK, 28–29 September 2016. [Google Scholar]
- Sun, C.; Nolte, F.; Cheng, K.H.Y.; Vuong, B.; Lee, K.K.C.; Standish, B.A.; Courtney, B.; Marotta, T.R.; Mariampillai, A.; Yang, V.X.D. In vivo feasibility of endovascular Doppler optical coherence tomography. Biomed. Opt. Express 2012, 3, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981. [Google Scholar]
- Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High Accuracy Optical Flow Estimation Based on a Theory for Warping; Springer: Berlin/Heidelberg, Germany, 2004; pp. 25–36. [Google Scholar]
- Bruhn, A.; Weickert, J.; Schnörr, C. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. IJCV 2005, 61, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Moshaei-Nezhad, Y.; Müller, J.; Schnabel, C.; Kirsch, M.; Tetzlaff, R. A robust optical flow motion estimation and correction method for IRT imaging in brain surgery. Quant. InfraRed Thermogr. J. 2020, 18, 226–251. [Google Scholar] [CrossRef]
- Gao, S.S.; Jia, Y.; Liu, L.; Zhang, M.; Takusagawa, H.L.; Morrison, J.C.; Huang, D. Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography. Investig. Ophthalmol. Visual Sci. 2016, 57, 4485–4492. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wei, W.; Song, S.; Qi, X.; Wang, R.K. Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications. Biomed. Opt. Express 2016, 7, 1905–1919. [Google Scholar] [CrossRef] [Green Version]
- Lagemann, C.; Lagemann, K.; Mukherjee, S.; Schröder, W. Deep recurrent optical flow learning for particle image velocimetry data. Nat. Mach. Intell. 2021, 3, 641–651. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, M.H.; Lee, S.K.; Yoo, K.S.; Seo, D.W.; Min, Y.I. Tumor vessel: A valuable cholangioscopic clue of malignant biliary stricture. Gastrointest. Endosc. 2000, 52, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, W.; Benalcazar, W.; Ahmad, A.; Sharma, U.; Tu, H.; Boppart, S.A. Numerical analysis of gradient index lens-based optical coherence tomography imaging probes. J. Biomed. Opt. 2010, 15, 066027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, J.; Huo, L.; Wu, Y.; Cobb, M.J.; Hwang, J.H.; Li, X. High-resolution OCT balloon imaging catheter with astigmatism correction. Opt. Lett. 2009, 34, 1943–1945. [Google Scholar] [CrossRef]
- Li, J.; de Groot, M.; Helderman, F.; Mo, J.; Daniels, J.M.A.; Grünberg, K.; Sutedja, T.G.; de Boer, J.F. High speed miniature motorized endoscopic probe for optical frequency domain imaging. Opt. Express 2012, 20, 24132–24138. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Zhu, T.; Yao, L.; Zhang, Z.; Li, H.; Ye, J.; Li, P. Noninvasive OCT angiography-based blood attenuation measurements correlate with blood glucose level in the mouse retina. Biomed. Opt. Express 2021, 12, 4680–4688. [Google Scholar] [CrossRef]
Input: OCT intensity image | |
Output: OCT distortion corrected intensity image | |
1: | Manually select static ROI in ; |
2: | for multiscale level L = 1,2,3 with downsampling ratio 0.5 do |
3: | for iteration k = 1, 2, …15 do |
4: | Solve for motion variable using CLG method with 0.012 regularization parameter and 20 × 20 window size; |
5: | end for; |
6: | Solve for motion variable using as initialization on this level; |
7: | end for; |
8: | Use the final solution as motion vectors ; |
9: | Calculate the averaged motion vectors (u’, v’) of same A-line; |
10: | Resample by bicubic interpolation; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Zhou, Y.; Liu, K.; Yin, X.; Deng, X.; Ding, Z.; Li, P. Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters. Photonics 2022, 9, 329. https://doi.org/10.3390/photonics9050329
Yao L, Zhou Y, Liu K, Yin X, Deng X, Ding Z, Li P. Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters. Photonics. 2022; 9(5):329. https://doi.org/10.3390/photonics9050329
Chicago/Turabian StyleYao, Lin, Yuan Zhou, Kaiyuan Liu, Xiaoting Yin, Xiaofeng Deng, Zhihua Ding, and Peng Li. 2022. "Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters" Photonics 9, no. 5: 329. https://doi.org/10.3390/photonics9050329
APA StyleYao, L., Zhou, Y., Liu, K., Yin, X., Deng, X., Ding, Z., & Li, P. (2022). Endoscopic OCT Angiography Using Clinical Proximal-End Scanning Catheters. Photonics, 9(5), 329. https://doi.org/10.3390/photonics9050329