Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review
Abstract
:1. Introduction
2. NIR-Si-Based Sensing Devices
2.1. Optical RR Structures
2.2. Bragg Grating (BG) Structures
2.3. Mach–Zehnder Interferometer (MZI) and Young’s Interferometer (YI) Structures
2.4. Photonic Crystals (PhCs) Sensing Devices
3. Si-Based MIR Gas Sensing Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Butt, M.A.; Khonina, S.; Kazanskiy, N. Optical elements based on silicon photonics. Comput. Opt. 2019, 43, 1079–1083. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L. Two-dimensional photonic crystal heterostructure for light steering and TM-polarization maintaining applications. Laser Phys. 2021, 31, 036201. [Google Scholar] [CrossRef]
- Dai, D.X.; Wang, S.P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front. Optoelectron. 2016, 9, 450–465. [Google Scholar] [CrossRef]
- Dan, L.; Citrin, D.S.; Hu, S. Compact high-performance polarization beam splitter based on a silicon photonic crystal heterojunction. Opt. Mater. 2020, 109, 110256. [Google Scholar]
- Chen, G.R.; Choi, J.W.; Sahin, E.; Ng, D.T.; Tan, D.H. On-chip 1 by 8 coarse wavelength division multiplexer and multi-wavelength source on ultra-silicon-rich nitride. Opt. Express 2019, 27, 23549–23557. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Compact design of a polarization beam splitter based on silicon-on-insulator platform. Laser Phys. 2018, 28, 116202. [Google Scholar] [CrossRef]
- Chiang, L.-Y.; Wang, C.-T.; Lin, T.-S.; Pappert, S.; Yu, P. Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler. Opt. Express 2020, 28, 29345–29356. [Google Scholar] [CrossRef]
- Janeiro, R.; Flores, R.; Viegas, J. Silicon photonics waveguide array sensor for selective detection of VOCs at room temperature. Sci. Rep. 2019, 9, 17099. [Google Scholar] [CrossRef]
- Liu, W.; Ma, Y.; Chang, Y.; Dong, B.; Wei, J.; Ren, Z.; Lee, C. Suspended silicon waveguide platform with subwavelength grating metamaterial cladding for long-wave infrared sensing applications. Nanophotonics 2021, 10, 1861–1870. [Google Scholar] [CrossRef]
- Westerveld, W.J.; Hassan, M.M.U.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens. J. 2020, 3, 1355–1362. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Ultrashort inverted tapered silicon ridge-to-slot waveguide coupler at 1.55 micrometer and 3.392 micrometer wavelength. Appl. Opt. 2020, 59, 7821–7828. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J. Mod. Opt. 2018, 65, 174–178. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Modelling of rib channel waveguides based on silicon-on-sapphire at 4.67 um wavelength for evanescent field gas absorption sensor. Optik 2018, 168, 692–697. [Google Scholar] [CrossRef]
- Conteduca, D.; Brunetti, G.; Dell’Olio, F.; Armenise, M.; Krauss, T.; Ciminelli, C. Monitoring of individual bacteria using electro-photonic traps. Biomed. Opt. Express 2019, 10, 3463–3471. [Google Scholar] [CrossRef]
- Therisod, R.; Tardif, M.; Marcoux, P.; Picard, E.; Jager, J.-B.; Hadji, E.; Peyrade, D.; Houdre, R. Gram-type differentiation of bacteria with 2D hollow photonic crystal cavities. Appl. Phys. Lett. 2018, 113, 111101. [Google Scholar] [CrossRef]
- Brunetti, G.; Conteduca, D.; Armenise, M.; Ciminelli, C. Novel micro-nano optoelectronic biosensor for label-free real-time biofilm monitoring. Biosensors 2021, 11, 361. [Google Scholar] [CrossRef]
- Baron, V.; Chen, M.; Clark, S.; Williams, A.; Dholakia, K.; Gillespie, S. Detecting phenotypically resistant mycobacterium tuberculosis using wavelength modulated raman spectroscopy. In Antibiotic Resistance Protocols. Methods in Molecular Biology; Gillespie, S., Ed.; Humana Press: New York, NY, USA, 2018; pp. 41–50. [Google Scholar]
- Kim, S.; Yu, G.; Kim, T.; Shin, K.; Yoon, J. Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy. Electrochim. Acta 2012, 82, 126–131. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. 2D-Heterostructure photonic crystal formation for on-chip polarization division multiplexing. Photonics 2021, 8, 313. [Google Scholar] [CrossRef]
- Wang, Y.; Reardon, C.; Read, N.; Thorpe, S.; Evans, A.; Todd, N.; Woude, M.D.; Krauss, T. Attachment and antibiotic response of early-stage biofilms studied using resonant hyperspectral imaging. Npj Biofilms Microbiomes 2020, 6, 57. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. 2D-Photonic crystal heterostructures for the realization of compact photonic devices. Photonics Nanostructures-Fundam. Appl. 2021, 44, 100903. [Google Scholar] [CrossRef]
- Kazanskiy, N.; Kazmierczak, A.; Butt, M. Why slot and hybrid plasmonic waveguides are ideal candidates for sensing applications? Optoelectron. Adv. Mater. Rapid Commun. 2021, 15, 195–206. [Google Scholar]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Ackert, J.; Thomson, D.; Shen, L.; Peacock, A.; Jessop, P.; Reed, G.; Mashanovich, G.; Knights, A. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat. Photonics 2015, 9, 393–396. [Google Scholar] [CrossRef]
- Nedelijkovic, M.; Velasco, A.; Khokhar, A.; Delage, A.; Cheben, P.; Mashanovich, G. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip. IEEE Photon. Technol. Lett. 2016, 28, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Zlatanovic, S.; Park, J.; Moro, S.; Boggio, J.; Divliansky, I.; Nikola, A.; Mookherjea, S.; Radic, S. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nat. Photonics 2010, 4, 561–564. [Google Scholar] [CrossRef]
- Williams, E.H.; Davydov, A.V.; Motayed, A.; Sundaresan, S.G.; Bocchini, P.; Richter, L.J.; Stan, G.; Steffens, K.; Zangmeister, R.; Schreifels, J.A.; et al. Immobilization of streptavidin on 4H-SiC for biosensor development. Appl. Surf. Sci. 2012, 258, 6056–6063. [Google Scholar] [CrossRef]
- Washburn, A.; Luchansky, M.; Bowman, A.; Bailey, R. Quantitative, Label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. Anal. Chem. 2010, 82, 69–72. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Device performance of standard strip, slot and hybrid plasmonic micro-ring resonator: A comparative study. Waves Random Complex Media 2021, 31, 2397–2406. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes. Curr. Appl. Phys. 2020, 20, 1274–1280. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly sensitive refractive index sensor based on plasmonic Bow Tie configuration. Photonic Sens. 2020, 10, 223–232. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A necessity in the field of sensing-A review (invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Han, L.; Zhao, X.; Huang, T.; Ding, H.; Wu, C. Comprehensive study of Phase-sensitive SPR sensor based on metal-ITO hybrid multilayer. Plasmonics 2019, 14, 1743–1750. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Modal characteristics of refractive index engineered hybrid plasmonic waveguide. IEEE Sens. J. 2020, 20, 9779–9786. [Google Scholar] [CrossRef]
- Soref, R.; Lorenzo, J. Single-crystal silicon: A new material for 1.3 and 1.6 um integrated-optical components. Electron. Lett. 1985, 21, 953. [Google Scholar] [CrossRef]
- Reed, G.; Headley, W.; Png, C. Silicon photonics: The early years. Proc. SPIE 2005, 5730, 596921. [Google Scholar]
- Rickman, A. The commercialization of silicon photonics. Nat. Photon. 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Liu, J.; Cannon, D.; Wada, K.; Ishikawa, Y.; Jongthammanurak, S.; Danielson, D.; Michel, J.; Kimerling, L. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett. 2005, 87, 011110. [Google Scholar] [CrossRef]
- Zhang, J.; Haq, B.; O’Callaghan, J.; Gocalinska, A.; Pelucchi, E.; Trindade, A.; Corbett, B.; Morthier, G.; Roelkens, G. Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt. Express 2018, 26, 8821–8830. [Google Scholar] [CrossRef]
- Singh, R.; Kumari, S.; Gautam, A.; Priye, V. Glucose sensing using slot waveguide-based SOI ring resonator. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Dai, D. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Opt. Express 2009, 17, 23817–23822. [Google Scholar] [CrossRef] [PubMed]
- Carlborg, C.F.; Gylfason, K.B.; Kaźmierczak, A.; Dortu, F.; Polo, M.J.B.; Catala, A.M.; Kresbach, G.M.; Sohlström, H.; Moh, T.; Vivien, L.; et al. A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. Lab Chip 2010, 10, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badri, S.H. Transmission resonances in silicon subwavelength grating slot waveguide with functional host material for sensing applications. Opt. Laser Technol. 2021, 136, 106776. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application. Sensors 2020, 20, 3416. [Google Scholar] [CrossRef]
- Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.; Khonina, S.N. Silicon photonic devices realized on refractive index engineered subwavelength grating waveguides—A review. Opt. Laser Technol. 2021, 138, 106863. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A. CMOS electrochemical instrumentation for biosensor microsystems: A review. Sensors 2017, 17, 74. [Google Scholar] [CrossRef]
- Li, L.; Yin, H.; Mason, A. Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for multichannel microfluidic lab-on-CMOS microsystems. IEEE Trans. Biomed. Circuits Systs. 2018, 12, 416–425. [Google Scholar] [CrossRef]
- Dai, D.; Wang, J.; Shi, Y. Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 2013, 38, 1422–1424. [Google Scholar] [CrossRef]
- Braun, T.; Raatz, S.; Maass, U.; van Dijk, M.; Walter, H.; Hölck, O.; Becker, K.-F.; Töpper, M.; Aschenbrenner, R.; Wöhrmann, M.; et al. Development of a multi-project fan-out wafer level packaging platform. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1–7. [Google Scholar]
- Tu, Z.; Gao, D.; Zhang, M.; Zhang, D. High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator. Opt. Express 2017, 25, 20911–20922. [Google Scholar] [CrossRef]
- Claes, T.; Bogaerts, W.; Bienstman, P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 2010, 18, 22747–22761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, J.; Soetaert, P.; Bienstman, P. Improving the detection limit of conformational analysis by utilizing a dual polarization Vernier cascade. Opt. Express 2016, 24, 67–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Ye, J.; Zou, J.; Li, M.; He, J. Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode. Opt. Lett. 2013, 38, 1349–1351. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Li, M.; He, J. High-sensitivity and wide-range optical sensor based on three cascaded ring resonators. Opt. Express 2017, 25, 972–978. [Google Scholar] [CrossRef]
- Claes, T.; Molera, J.G.; de Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 2020, 30, 292–299. [Google Scholar] [CrossRef]
- Guider, R.; Gandolfi, D.; Chalyan, T.; Pasquardini, L.; Samusenko, A.; Pederzolli, C.; Pucker, G.; Pavesi, L. Sensitivity and limit of detection of biosensors based on ring resonators. Sens. Bio-Sens. Res. 2015, 6, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.; Khonina, S.; Kazanskiy, N. A highly sensitive design of subwavelength grating double-slot waveguide microring resonator. Laser Phys. Lett. 2020, 17, 076201. [Google Scholar] [CrossRef]
- Kwon, M.; Steier, W. Microring-resonator-based sensor measuring both the concentration and temperature of a solution. Opt. Express 2008, 16, 9372–9377. [Google Scholar] [CrossRef] [Green Version]
- Guha, B.; Kyotoku, B.; Lipson, M. CMOS-compatible athermal silicon microring resonators. Opt. Express 2010, 18, 3487–3493. [Google Scholar] [CrossRef] [Green Version]
- Missinne, J.; Beneitez, N.; Lamberti, A.; Chiesura, G.; Luyckx, G.; Mattelin, M.-A.; van Paepegem, W.; van Steenberge, G. Thin and Flexible Polymer Photonic Sensor Foils for Monitoring Composite Structures. Adv. Eng. Mater. 2018, 20, 1701127. [Google Scholar] [CrossRef]
- Tsao, S.; Peng, P. An SOI Michelson interferometer sensor with waveguide Bragg reflective gratings for temperature monitoring. Microw. Opt. Technol. Lett. 2001, 30, 321–322. [Google Scholar] [CrossRef]
- Burla, M.; Cortes, L.; Li, M.; Wang, X.; Chrostowski, L.; Azana, J. On-chip programmable ultra- wideband microwave photonic phase shifter and true time delay unit. Opt. Lett. 2014, 39, 6181–6184. [Google Scholar] [CrossRef] [PubMed]
- Nikolai, N.; Mittal, S.; Berger, M.; Ahmed, Z. On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt. Lett. 2015, 40, 3934–3936. [Google Scholar]
- Kai, C.; Fei, D.; Yu, Y. High-performance thermo-optic tunable grating filters based on laterally supported suspended silicon ridge waveguide. Opt. Express 2018, 26, 19479. [Google Scholar]
- Butt, M.; Khonina, S.N.; Kazanskiy, N.L. Numerical analysis of a miniaturized design of a Fabry-Perot resonator based on silicon strip and slot waveguides for bio-sensing applications. J. Mod. Opt. 2019, 66, 1172–1178. [Google Scholar] [CrossRef]
- Qiu, H.; Jiang, J.; Yu, P.; Dai, T.; Yang, J.; Yu, H.; Jiang, X. Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide. Opt. Lett. 2016, 41, 2450–2453. [Google Scholar] [CrossRef]
- Li, H.; An, Z.; Mao, Q.; Zuo, S.; Zhu, W.; Zhang, S.; Zhang, C.; Li, E.; Garcia, J. SOI Waveguide Bragg Grating Photonic Sensor for Human body temperature measurement based on photonic integrated interrogator. Nanomaterials 2022, 11, 29. [Google Scholar] [CrossRef]
- Jugessur, A.; Dou, J.; Aitchison, J.; de la Rue, R.; Gnan, M. A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications. Microelectron. Eng. 2009, 86, 1488–1490. [Google Scholar] [CrossRef]
- Kim, K.; Oh, M. Flexible Bragg reflection waveguide devices fabricated by post-lift-off process. IEEE Photonics Technol. Lett. 2008, 20, 288–290. [Google Scholar] [CrossRef]
- Pustelny, T.; Zielonka, I.; Tyszkiewicz, C.; Karasinski, P.; Pustelny, B. Impressing technology of optical Bragg’s gratings on planar optical sol-gel waveguides. Opto-Electron. Rev. 2006, 14, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Passaro, V.M.N.; Loiacono, R.; D’Amico, G.; De Leonardis, F. Design of Bragg gratin sensors based on submicrometer optical rib waveguides in SOI. IEEE Sens. J. 2008, 8, 1603–1611. [Google Scholar] [CrossRef]
- Runde, D.; Brunken, S.; Ruter, C.; Kip, D. Integrated optical electric field sensor based on a Bragg grating in lithium niobate. Appl. Phys. B 2007, 86, 91–95. [Google Scholar] [CrossRef]
- Sparrow, I.; Emmerson, G.; Gawith, C.; Smith, P.; Kaczmarek, M.; Dyadyusha, A. First order phase change detection using planar waveguide Bragg grating refractometer. Appl. Phys. B 2005, 81, 1–4. [Google Scholar] [CrossRef]
- Sparrow, I.; Emmerson, G.; Gawith, C.; Smith, P. Planar waveguide hygrometer and state sensor demonstrating supercooled water recognition. Sens. Actuators B 2005, 107, 856–860. [Google Scholar] [CrossRef]
- Dai, X.; Mihailov, S.; Callender, C.; Blanchetiere, C.; Walker, R. Ridge waveguide-based polarization insensitive Bragg grating refractometer. Meas. Sci. Technol. 2006, 17, 1752–1756. [Google Scholar] [CrossRef]
- Lee, S.-M.; Ahn, K.-C.; Sirkis, J. Planar optical waveguide temperature sensor based on etched Bragg gratings considering nonlinear thermo-optic effect. KSME Int. J. 2001, 15, 309–319. [Google Scholar] [CrossRef]
- Dotsenko, A.; Diikov, A.; Vartanyan, T. Label-free biosensor using an optical waveguide with induced Bragg grating of variable strength. Sens. Actuators B 2003, 94, 116–121. [Google Scholar] [CrossRef]
- Nishiyama, H.; Hirata, Y.; Miyamoto, I.; Nishii, J. Formation of periodic structures by the space-selective precipitation of Ge nanoparticles in channel waveguides. Appl. Surf. Sci. 2007, 253, 6550–6554. [Google Scholar] [CrossRef]
- Boulart, C.; Mowlem, M.; Connelly, D. A novel, low-cost, high performance dissolved methane sensor for aqueous environments. Opt. Express 2008, 16, 12607–12617. [Google Scholar] [CrossRef]
- Boulart, C.; Prien, R.; Chavagnac, V.; Dutasta, J.-P. Sensing dissolved methane in aquatic environments: An experiment in the central Baltic Sea using surface plasmon resonance. Environ. Sci. Technol. 2013, 47, 8582–8590. [Google Scholar] [CrossRef] [PubMed]
- Heideman, R.; Kooyman, R.; Greve, J. Development of an optical waveguide interferometric immunosensor. Sens. Actuators B Chem. 1991, 4, 297–299. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.-J.; Lo, G.-Q.; Park, M.K. Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 2013, 188, 681–688. [Google Scholar] [CrossRef]
- Mahmudin, D.; Huda, N.; Estu, T.T.; Fathnan, A.A.; Daud, P.; Hardiati, S.; Hasanah, L.; Wijayanto, Y.N. Design of optical channel waveguide Mach-Zehnder interferometer (MZI) for environmental sensor applications. J. Phys. Conf. Ser. 2017, 817, 012036. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M. Ultrahigh temperature-sensitive silicon MZI with titania cladding. Front. Mat. 2015, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Yi, Y.; Cao, Y.; Lv, J.; Yang, Y.; Wang, F.; Sun, X.; Zhang, D. A polymer asymmetric Mach-Zehnder interferometer sensor model based on electrode thermal writing waveguide technology. Micromachines 2019, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, A.; Henninger, R. Integrated optical Young Interferometer. Appl. Opt. 1994, 33, 5941–5947. [Google Scholar] [CrossRef]
- Brandenburg, A.; Krauter, R.; Kunzel, C.; Stefan, M.; Schulte, H. Interferometric sensor for detection of surface-bound bioreactions. Appl. Opt. 2000, 39, 6396–6405. [Google Scholar] [CrossRef]
- Schmitt, K.; Schirmer, B.; Hoffmann, C.; Branderburg, A.; Meyrueis, P. Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens. Bioelectron. 2007, 22, 2591–2597. [Google Scholar] [CrossRef]
- Uusitalo, S.; Kansakoski, M.; Karkkainen, A.O.; Hannu-Kuure, M.; Aikio, S.; Kopola, H. Biosensing with low-index waveguides: An experimental study of a polymer-based Young interferometer sensor. Micro Nanosyst. 2010, 2, 65–69. [Google Scholar] [CrossRef]
- Kim, K.; Murphy, T. Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing. Opt. Express 2013, 21, 19488. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Wang, X.; Frandsen, L. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 2016, 24, 16349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, W.; Berini, P. Integrated multichannel Young’s interferometer sensor based on long-range surface plasmon waveguides. Opt. Express 2019, 27, 25470. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Dong, Y.; Liu, Y.; Li, T. Mach-Zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section. Sensors 2015, 15, 21500–21517. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Dai, D.; Shi, Y. Ultra-sensitive silicon temperature sensor based on cascaded Mach-Zehnder interferometers. Opt. Lett. 2021, 46, 2787–2790. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, J.; He, J.-J. Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering. Opt. Express 2018, 26, 26057–26064. [Google Scholar] [CrossRef]
- el Shamy, R.; Swillam, M.; el Rayany, M.; Sultan, A.; Li, X. Compact gas sensor using silicon-on-insulator loop-terminated Mach-Zehnder interferometer. Photonics 2022, 9, 8. [Google Scholar] [CrossRef]
- Hiltunen, M.; Hiltunen, J.; Stenberg, P.; Aikio, S.; Kurki, L.; Vahimaa, P.; Karioja, P. Polymeric slot waveguide interferometer for sensor applications. Opt. Express 2014, 22, 7229–7237. [Google Scholar] [CrossRef]
- Xing, P.; Viegas, J. Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer. Opt. Express 2015, 23, 24098–24107. [Google Scholar] [CrossRef]
- Ahmadi, L.; Hiltunen, M.; Stenberg, P.; Hiltunen, J.; Aikio, S.; Roussey, M.; Saarinen, J.; Honkanen, S. Hybrid layered polymer slot waveguide Young interferometer. Opt. Express 2016, 24, 10275–10285. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A. One-dimensional photonic crystal waveguide based on the SOI platform for transverse magnetic polarization-maintaining devices. Photonics Lett. Pol. 2020, 12, 85–87. [Google Scholar] [CrossRef]
- Gowdhami, D.; Balaji, V.R.; Murugan, M.; Robinson, S.; Hegde, G. Photonic crystal based biosensors: An overview. ISSS J. Micro Smart Syst. 2022, 1–21. [Google Scholar] [CrossRef]
- Bahabady, A.; Olyaee, S. Two-curve-shaped biosensor for detecting glucose concentration and salinity of seawater based on photonic crystal nano-ring resonator. Sens. Lett. 2015, 13, 774–777. [Google Scholar] [CrossRef]
- Inan, H.; Poyraz, M.; Inci, F.; Lifson, M.; Baday, M.; Cunningham, B.; Demirci, U. Photonic crystals: Emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 2017, 46, 366. [Google Scholar] [CrossRef] [PubMed]
- Skivesen, N.; Tetu, A.; Kristensen, M.; Kjems, J.; Frandsen, L.; Borel, P. Photonic-crystal waveguide biosensor. Opt. Express 2007, 15, 3169–3176. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Arjmand, M.; Talebzadeh, R. Optical filter based on photonic crystal resonant cavity. Optoelectron. Adv. Mater.-Rapid Commun. 2015, 9, 32–35. [Google Scholar]
- Ge, X.; Shi, Y.; He, S. Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect. Opt. Lett. 2014, 39, 6973–6976. [Google Scholar] [CrossRef]
- Brosi, J.-M.; Koos, C.; Andreani, L.C.; Waldow, M.; Leuthold, J.; Freude, W. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 2008, 16, 4177–4191. [Google Scholar] [CrossRef]
- Fasihi, K. High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Lightwave Technol. 2014, 32, 3126–3131. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, Q.; Feng, X.; Huang, Y.; Li, Y.; Wang, D.; Zhang, W. Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Appl. Phys. Lett. 2012, 100, 201102. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Subbaraman, H.; Hosseini, A.; Wang, A.X.; Zhu, L.; Chen, R.T. Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines. Appl. Phys. Lett. 2012, 101, 051101. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Zlatanovic, S.; Mirkarimi, L.W.; Sigalas, M.M.; Bynum, M.A.; Chow, E.; Robotti, K.M.; Burr, G.W.; Esener, S.; Grot, A. Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration. Sens. Actuators B Chem. 2009, 141, 13–19. [Google Scholar] [CrossRef]
- Martinez, A.; Sanchis, P.; Marti, J. Mach-Zehnder interferometers in photonic crystals. Opt. Quantum Electron. 2005, 37, 77–93. [Google Scholar] [CrossRef]
- Salem, M.; Sailor, M.; Harraz, F.; Sakka, T.; Ogata, Y. Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds. J. Appl. Phys. 2006, 100, 083520. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lin, L.; Liu, D.; Chen, Q.; Wu, J. Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids. Anal. Chim. Acta 2017, 953, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.S.; Cardador, D.; Vega, D.; Santos, M.; Dios, F.; Rodríguez, A. Bandgap widening in macroporous silicon photonic crystals by multiperiodic structures. J. Phys. Commun. 2018, 2, 055014. [Google Scholar] [CrossRef]
- Caroselli, R.; Sánchez, D.M.; Alcántara, S.P.; Quilez, F.P.; Morán, L.T.; García-Rupérez, J. Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor. Sensors 2017, 17, 2813. [Google Scholar] [CrossRef] [Green Version]
- Pham, V.H.; Bui, H.; Van Nguyen, T.; Nguyen, T.A.; Pham, T.S.; Tran, T.C.; Hoang, T.T.; Ngo, Q.M. Progress in the research and development of photonic structure devices. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016, 7, 015003. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, C.; Sun, F.; Fu, Z.; Xiao, Z.; Wang, J.; Tian, H. Double-layer Fano resonance photonic-crystal-slab-based sensor for label-free detection of different size analytes. J. Acoust. Soc. Am. B 2019, 36, 215–222. [Google Scholar] [CrossRef]
- Fecteau, A.; Frechette, L. Tamm plasmon-polaritons in a metal coated porous silicon photonic crystal. Opt. Mater. Express 2018, 8, 2774–2781. [Google Scholar] [CrossRef]
- Sudha, M.; Pratyusha, D.; Meher, W.; Shivakiran, B. Optical properties of Tamm states in metal grating-one dimensional photonic crystal structures. Nanophootnics 2018, 10672, 106723E. [Google Scholar]
- Auguié, B.; Fuertes, M.C.; Angelomé, P.; Abdala, N.L.; Soler-Illia, G.; Fainstein, A. Tamm plasmon resonance in mesoporous multilayers: Toward a sensing application. ACS Photonics 2014, 1, 775–780. [Google Scholar] [CrossRef]
- Ahmed, A.; Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 2019, 9, 6973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorfner, D.; Hurlimann, T.; Zabel, T.; Frandsen, L.; Abstreiter, G.; Finley, J. Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett. 2008, 93, 181103. [Google Scholar] [CrossRef] [Green Version]
- Falco, A.; Faolain, L.; Krauss, T. Chemical sensing in slotted photonic crystal heterostructure cavities. Appl. Phys. Lett. 2009, 94, 063503. [Google Scholar] [CrossRef]
- Huang, L.; Tian, H.; Zhou, J.; Liu, Q.; Zhang, P.; Ji, Y. Label-free optical sensor by designing a high-Q photonic crystal ring-slot structure. Opt. Commun. 2015, 335, 73–77. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Lu, N.; Zhu, J.; Jin, G. Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Opt. Commun. 2008, 281, 1725–1731. [Google Scholar] [CrossRef]
- Caër, C.; Serna, S.; Zhang, W.; Le Roux, X.; Cassan, E. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration. Opt. Lett. 2014, 39, 5792–5794. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Schelew, E.; Young, J. Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting. Appl. Phys. Lett. 2013, 102, 131115. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Tian, H.; Yang, D.; Liu, Q.; Ji, Y. Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on silicon-on-insulator substrate. Opt. Commun. 2014, 330, 175–183. [Google Scholar] [CrossRef]
- Chow, E.; Grot, A.; Mirkarimi, L.; Sigalas, M.; Girolami, G. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 2004, 29, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Sunner, T.; Stichel, T.; Kwon, S.-H.; Schlereth, T.; Hofling, S.; Kamp, M.; Forchel, A. Photonic crystal cavity based gas sensor. Appl. Phys. Lett. 2008, 92, 261112. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, J.; Zhou, J.; Chen, Y.; Zou, C.; Majumdar, A. Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing. Opt. Express 2019, 27, 3609. [Google Scholar] [CrossRef] [PubMed]
- Tayoub, H.; Hocini, A.; Harhouz, A. High-sensitive mid-infrared photonic crystal sensor using slotted-waveguide coupled-cavity. Prog. Electromagn. Res. M 2021, 105, 45–54. [Google Scholar] [CrossRef]
- Maache, M.; Fazea, Y.; Hassan, I.; Alkahtani, A.; Din, I. High-sensitivity capsule-shaped sensor based on 2D photonic crystals. Symmetry 2020, 12, 1480. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 2005, 13, 1202. [Google Scholar] [CrossRef]
- O’Faolain, L.; White, T.; O’Brien, D.; Yuan, X.; Settle, M.D.; Krauss, T.F. Dependence of extrinsic loss on group velocity in photonic crystal waveguides. Opt. Express 2007, 15, 13129–13138. [Google Scholar] [CrossRef]
- Beggs, D.; O’Faolain, L.; Krauss, T. Accurate determination of the functional hole size in photonic crystal slabs using optical methods. Photonics Nanostructures-Fundam. Appl. 2008, 6, 213–218. [Google Scholar] [CrossRef]
- Pergande, D.; Geppert, T.M.; von Rhein, A.; Schweizer, S.L.; Wehrspohn, R.B.; Moretton, S.; Lambrecht, A. Miniature infrared gas sensors using photonic crystals. J. Appl. Phys. 2011, 109, 083117. [Google Scholar] [CrossRef]
- Hagino, H.; Takahashi, Y.; Tanaka, Y.; Asano, T.; Noda, S. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys. Rev. B 2009, 79, 085112. [Google Scholar] [CrossRef]
- Zou, Y.; Chakravarty, S.; Kwong, D.N.; Lai, W.-C.; Xu, X.; Lin, X.; Hosseini, A.; Chen, R.T. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 6900710. [Google Scholar]
- Chang, Y.; Jhu, Y.; Wu, C. Temperature dependence of defect mode in a defective photonic crystal. Opt. Commun. 2012, 285, 1501–1504. [Google Scholar] [CrossRef]
- Karnutsch, C.; Smith, C.L.C.; Graham, A.; Tomljenovic-Hanic, S.; McPHEDRAN, R.; Eggleton, B.J.; O’Faolain, L.; Krauss, T.F.; Xiao, S.; Mortensen, N.A. Temperature stabilization of optofluidic photonic crystal cavities. Appl. Phys. Lett. 2009, 94, 231114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Tombez, L.; Orcutt, J.; Kamlapurkar, S.; Wysocki, G.; Green, W. Silicon photonic on-chip trace-gas spectroscopy of methane. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Zhang, Y.-N.; Zhao, Y.; Zhou, T.; Wu, Q. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities. Lab Chip 2018, 18, 57–74. [Google Scholar] [CrossRef]
- Schliesser, A.; Picque, N.; Hansch, T. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Goldenstein, C.; Spearrin, R.; Jeffries, J.; Hanson, R. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Bernath, P. Spectra of Atoms and Molecules, 3rd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2016; p. 465. [Google Scholar]
- Schmid, T. Photoacoustic spectroscopy for process analysis. Anal. Bioanal. Chem. 2006, 384, 1071–1086. [Google Scholar] [CrossRef]
- Willer, U.; Saraji, M.; Khorsandi, A.; Geiser, P.; Schade, W. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 2006, 44, 699–710. [Google Scholar] [CrossRef]
- Schieweck, A.; Uhde, E.; Salthammer, T.; Salthammer, L.; Morawska, L.; Mazaheri, M.; Kumar, P. Smart homes and the control of indoor air quality. Renew. Sustain. Energy Rev. 2018, 94, 705–718. [Google Scholar] [CrossRef]
- Perez, A.O.; Bierer, B.; Scholz, L.; Wollenstein, J.; Palzer, S. A wireless gas sensor network to monitor indoor environmental quality in schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef] [Green Version]
- Metsala, M. Optical techniques for breath analysis: From single to multi-species detection. J. Breath Res. 2018, 12, 027104. [Google Scholar] [CrossRef] [PubMed]
- Butt, N.; Kazanskiy, N. SOI Suspended membrane waveguide at 3.39 µm for gas sensing application. Photonics Lett. Pol. 2020, 12, 67–69. [Google Scholar] [CrossRef]
- Shankar, R.; Bulu, I.; Loncar, M. Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared. Appl. Phys. Lett. 2013, 102, 051108. [Google Scholar] [CrossRef]
- Spott, A.; Liu, Y.; Baehr-Jones, T.; Ilic, R.; Hochberg, M. Silicon waveguides and ring resonators at 5.5 um. Appl. Phys. Lett. 2010, 97, 213501. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Cheng, Z.; Chen, X.; Xu, K.; Fung, C.; Chen, Y.; Tsang, H. Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning. IEEE Photon. J. 2012, 4, 1095–1102. [Google Scholar] [CrossRef]
- Swinehart, D. The beer-lambert law. J. Chem. Educ. 1962, 39, 333–335. [Google Scholar] [CrossRef]
- Butt, M.A.; Degtyarev, S.A.; Khonina, S.N.; Kazanskiy, N.L. An evanescent field absorption gas sensor at mid-IR 3.39 microns wavelength. J. Mod. Opt. 2017, 64, 1892–1897. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sens. J. 2020, 20, 8469–8476. [Google Scholar] [CrossRef]
- Huang, Y.; Kalyoncu, S.; Zhao, Q.; Torun, R.; Boyraz, O. Silicon on sapphire waveguides design for the MID IR evanescent field absorption gas sensors. Opt. Commun. 2014, 313, 186–194. [Google Scholar] [CrossRef]
- Stewart, G.; Culshaw, B. Optical waveguide modelling and design for evanescent field chemical sensors. Opt. Quantum Electron. 1994, 26, S249–S259. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, J.; Lin, P. Real-time and non-destructive hydrocarbon gas sensing using mid-infrared integrated photonic circuits. RSC Adv. 2020, 10, 7452. [Google Scholar] [CrossRef] [PubMed]
- Kazanskiy, N.; Khonina, S.; Butt, M. Polarization-insensitive hybrid plasmonic waveguide design for evanescent field absorption gas sensor. Photonic Sens. 2021, 11, 279–290. [Google Scholar] [CrossRef]
Waveguide Type | Experiment/Simulation | S (nm/RIU) | FOM | Q-Factor | LOD | Ref. |
---|---|---|---|---|---|---|
Hybrid plasmonic | Simulation | 690 and 401 | 40 and 98 | 222 | - | [58] |
Ridge | Experiment | 112 | - | - | 1.6 × 10−6 | [59] |
Slot | Experiment | - | - | - | 5 × 10−6 | [43] |
Slot | Experiment | 298 | - | - | 4.2 × 10−5 | [57] |
Ridge | Simulation | 167 | 49.9 | 561.6 | 2.75 × 10−2 | [30] |
Slot | Simulation | 233.3 | 75.18 | 593.6 | 1.33 × 10−2 | [30] |
Hybrid plasmonic | Simulation | 333.3 | 58.5 | 396.5 | 1.71 × 10−2 | [30] |
Ridge | Experiment | 2169 | - | - | 8.3 × 10−6 | [53] |
SWG hybrid plasmonic | Simulation | 1000 | 287.35 | 441.05 | - | [35] |
SWG double slot | Simulation | 840 | 6461.5 | 9246.2 | [60] |
Sensor Design | Experiment/Simulation | Sensitivity | LOD | Sensor Type | Ref. |
---|---|---|---|---|---|
MZI | Simulation | 7296.6%/RIU | 2.74 × 10−6 | Biochemical | [96] |
MZI | Experiment | 1753.7 pm/°C | - | Temperature | [97] |
MZI | Experiment | 438 pm/°C | - | Temperature | [98] |
MZI | Experiment | 1070 nm/RIU | - | Gas | [99] |
YI | Experiment | 2.2 rad/°C | 6.4 × 10−6 | Temperature | [100] |
MZI | Experiment | 2.5 pm/K | - | Temperature | [101] |
YI | Experiment | 750 fg/mm2 | 9 × 10−8 | Biochemical | [90] |
YI | Experiment | - | 1 × 10−6 | Biochemical | [95] |
YI | Experiment | 0.051 | 1 × 10−6 | Biochemical | [102] |
Structure | S (nm/RIU) | Q-Factor | Detection Limit (RIU−1) | Experiment/Simulation | Reference |
---|---|---|---|---|---|
Defect nanocavity 1 | 155 | 400 | 0.018 | Experiment | [128] |
Defect nanocavity 2 | 63 | 3000 | 0.006 | Experiment | [128] |
Heterostructure cavities | 1500 | 50,000 | 7.8 × 10−6 | Experiment | [129] |
PhC ring-slot structure | 160 | 107 | 8.75 × 10−5 | Simulation | [130] |
Point-defect resonant cavity | 330 | 3820 | 0.001 | Simulation | [131] |
Slot PhC cavity | 235 | 25,000 | 1.25 × 10−5 | Experiment | [132] |
PhC slot-μ-cavity | 370 | 7500 | 2.3 × 10−5 | Experiment | [133] |
H2 nanocavity | 131.7 | 2966 | 3.797 × 10−6 | Simulation | [134] |
2D PhC μ-cavity | 200 | 400 | 0.002 | Experiment | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics 2022, 9, 331. https://doi.org/10.3390/photonics9050331
Kazanskiy NL, Khonina SN, Butt MA. Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics. 2022; 9(5):331. https://doi.org/10.3390/photonics9050331
Chicago/Turabian StyleKazanskiy, Nikolay L., Svetlana N. Khonina, and Muhammad A. Butt. 2022. "Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review" Photonics 9, no. 5: 331. https://doi.org/10.3390/photonics9050331
APA StyleKazanskiy, N. L., Khonina, S. N., & Butt, M. A. (2022). Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review. Photonics, 9(5), 331. https://doi.org/10.3390/photonics9050331