Enhancing Finite Element-Based Photoacoustic Tomography by Localized Reconstruction Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reconstruction Algorithm
2.2. Numerical Simulations
2.3. Phantom Experiments
2.4. In Vivo Experiments
3. Results
3.1. Simulation Results
3.2. Phantom Experimental Results
3.3. In Vivo Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Jiang, H.; O’Neill, B.E. Photoacoustic Imaging: An Emerging Optical Modality in Diagnostic and Theranostic Medicine. J. Biosens. Bioelectron. 2011, 2, 1000108-1. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 627–638. [Google Scholar] [CrossRef]
- Cox, B.T.; Laufer, J.; Arridge, S.R.; Beard, P.C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012, 17, 0612021–06120222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oraevsky, A.A.; Karabutov, A.A.; Solomatin, S.V.; Savateeva, E.V.; Andreev, V.A.; Gatalica, Z.; Singh, H.; Fleming, R.D. Laser optoacoustic imaging of breast cancer in vivo. Proc. SPIE 2001, 4256, 6–16. [Google Scholar] [CrossRef]
- Manohar, S.; Kharine, A.; Van Hespen, J.C.G.; Steenbergen, W.; van Leeuwen, T. Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms. Phys. Med. Biol. 2005, 50, 2543–2557. [Google Scholar] [CrossRef] [PubMed]
- Kolkman, R.G.M.; Klaessens, J.H.G.M.; Hondebrink, E.; Hopman, J.C.W.; De Mul, F.F.M.; Steenbergen, W.; Thijssen, J.M.; van Leeuwen, T. Photoacoustic determination of blood vessel diameter. Phys. Med. Biol. 2004, 49, 4745–4756. [Google Scholar] [CrossRef]
- Siphanto, R.I.; Thumma, K.K.; Kolkman, R.G.M.; van Leeuwen, T.; De Mul, F.F.M.; Van Neck, J.W.; Van Adrichem, L.N.A.; Steenbergen, W. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt. Express 2005, 13, 89–95. [Google Scholar] [CrossRef]
- Yang, S.; Xing, D.; Zhou, Q.; Xiang, L.; Lao, Y. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 2007, 34, 3294–3301. [Google Scholar] [CrossRef]
- Zhang, E.Z.; Laufer, J.; Beard, P. Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system. SPIE 2007, 6437, 64370S. [Google Scholar] [CrossRef]
- Hoelen, C.G.A.; De Mul, F.F.M.; Pongers, R.; Dekker, A. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 1998, 23, 648. [Google Scholar] [CrossRef] [PubMed]
- Emelianov, S.Y.; Li, P.; O’Donnell, M. Photoacoustics for molecular imaging and therapy. Phys. Today 2009, 5, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razansky, D.; Distel, M.; Vinegoni, C.; Ma, R.; Perrimon, N.; Köster, R.W.; Ntziachristos, V. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 2009, 3, 379. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Wang, L.V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nat. Protoc. 2007, 2, 797–804. [Google Scholar] [CrossRef]
- De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.; Ma, T.-J.; Oralkan, O.; et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562. [Google Scholar] [CrossRef]
- Bouchard, L.S.; Anwar, M.S.; Liu, G.L.; Hann, B.; Xie, Z.H.; Gray, J.W.; Wang, X.; Pines, A.; Chen, F.F. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc. Natl. Acad. Sci. USA 2009, 106, 4085–4089. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Shao, J.; Gao, X.; Tao, C.; Ge, J.; Liu, X. Noninvasive Assessment of Early Dental Lesion Using a Dual-Contrast Photoacoustic Tomography. Sci. Rep. 2016, 6, 21798. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Sobel, E.S.; Jiang, H. Quantitative three-dimensional photoacoustic tomography of the finger joints: An in vivo study. J. Biomed. Opt. 2009, 14, 064002. [Google Scholar] [CrossRef]
- Sun, Y.; Sobel, E.S.; Jiang, H. First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints. Med. Phys. 2011, 38, 4009–4017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, Z.; Carney, P.R.; Yuan, Z.; Chen, H.; Roper, S.N.; Jiang, H. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys. Med. Biol. 2008, 53, 1921–1931. [Google Scholar] [CrossRef] [PubMed]
- Kruger, R.A.; Reinecke, D.R.; Kruger, G.A. Thermoacoustic computed tomography-technical considerations. Med Phys. 1999, 26, 1832–1837. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, L.V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 2005, 71, 016706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Xu, G.; Yu, Y.; Zhou, Y.; Carson, P.L.; Wang, X.; Liu, X. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt. 2013, 18, 086001. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Huang, C.; Kao, Y.-J.; Chou, C.-Y.; Oraevsky, A.; Anastasio, M.A. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units. Med. Phys. 2013, 40, 023301. [Google Scholar] [CrossRef]
- Anastasio, M.A.; Zhang, J.; Pan, X.; Zou, Y.; Ku, G.; Wang, L.V. Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med Imaging 2005, 24, 199–210. [Google Scholar] [CrossRef]
- Kunyansky, A.L. Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 2007, 23, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Anastasio, M.A.; La Rivière, P.J. Comparison of iterative reconstruction approaches for photoacoustic tomography. Proc. SPIE 2007, 6437, 256–261. [Google Scholar] [CrossRef]
- Li, C.; Wang, L.V. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 2009, 54, R59–R97. [Google Scholar] [CrossRef]
- Ephrat, P.; Keenliside, L.; Seabrook, A.; Prato, F.S.; Carson, J.J.L. Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction. J. Biomed. Opt. 2008, 13, 054052. [Google Scholar] [CrossRef] [Green Version]
- Paltauf, G.; Viator, J.A.; Prahl, S.A.; Jacques, S.L. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am. 2002, 112, 1536–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haltmeier, M.; Nguyen, L.V. Analysis of Iterative Methods in Photoacoustic Tomography with Variable Sound Speed. SIAM J. Imaging Sci. 2017, 10, 751–781. [Google Scholar] [CrossRef]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, I.; Kim, J.; Schneider, M.K.; Hyun, D.; Zlitni, A.; Hopper, S.M.; Klap, T.; Sonn, G.A.; Dahl, J.J.; Kim, C.; et al. Superiorized Photo-Acoustic Non-NEgative Reconstruction (SPANNER) for Clinical Photoacoustic Imaging. IEEE Trans. Med. Imaging 2021, 40, 1888–1897. [Google Scholar] [CrossRef]
- Antholzer, S.; Haltmeier, M.; Schwab, J. Deep learning for photoacoustic tomography from sparse data. Inverse Probl. Sci. Eng. 2019, 27, 987–1005. [Google Scholar] [CrossRef] [Green Version]
- Poudel, J.; Lou, Y.; A Anastasio, M. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Phys. Med. Biol. 2019, 64, 14TR01. [Google Scholar] [CrossRef]
- Jiang, H.; Yuan, Z.; Gu, X. Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography. J. Opt. Soc. Am. A 2006, 23, 878–888. [Google Scholar] [CrossRef]
- Yao, L.; Jiang, H. Finite-element-based photoacoustic tomography in time domain. J. Opt. A Pure Appl. Opt. 2009, 11, 085301. [Google Scholar] [CrossRef]
- Yao, L.; Jiang, H. Photoacoustic image reconstruction from few-detector and limited-angle data. Biomed. Opt. Express 2011, 2, 2649–2654. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, H. Quantitative photoacoustic tomography: Recovery of optical absorption coefficient map of heterogeneous medium. Appl. Phys. Lett. 2006, 88, 231101. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, Q.; Jiang, H. Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. Opt. Express 2006, 14, 6749–6754. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Jiang, H. Simultaneous recovery of tissue physiological and acoustic properties and the criteria for heterogeneous media by quantitative photoacoustic tomography. Opt. Lett. 2009, 34, 1714–1716. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; He, L.; Zhu, Z.; Tang, J.; Xiao, J. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method. Appl. Opt. 2013, 52, 8270–8279. [Google Scholar] [CrossRef]
- Shan, T.; Qi, J.; Jiang, M.; Jiang, H. GPU-based acceleration and mesh optimization of finite-element-method-based quantitative photoacoustic tomography: A step towards clinical applications. Appl. Opt. 2017, 56, 4426–4432. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yuan, Z.; Jiang, H. Enhancing Mesh-based Photoacoustic Tomography with Parallel Computing on Multiprocessor Scheme. Commun. Comput. Phys. 2018, 24, 764–773. [Google Scholar] [CrossRef]
- Yu, L.; Zou, Y.; Sidky, E.Y.; Pelizzari, C.A.; Munro, P.; Pan, X. Region of interest reconstruction from truncated data in circular cone-beam CT. IEEE Trans. Med. Imaging 2006, 25, 869–881. [Google Scholar] [CrossRef]
- Chityala, R.N.; Hoffmann, K.R.; Bednarek, D.R.; Rudin, S. Region of interest (ROI) computed tomography. Med. Imaging Phys. Med. Imaging 2004, 5368, 534–541. [Google Scholar]
- Sun, Y.; Jiang, H. Quantitative three-dimensional photoacoustic tomography of the finger joints: Phantom studies in a spherical scanning geometry. Phys. Med. Biol. 2009, 54, 5457–5467. [Google Scholar] [CrossRef]
Radius of ROI (mm) | No. of ROI Nodes | Time Cost (s) | Target Size (mm) | Error of Target Size | Reconstruction Error |
---|---|---|---|---|---|
* | 4489 | 7745 | 3.96 | - | - |
10.0 | 2009 | 1144 | 4.08 | 3.03% | 2.84% |
7.5 | 1119 | 317 | 4.13 | 4.29% | 3.67% |
4.0 | 323 | 49 | 4.14 | 4.55% | 4.47% |
Algorithm * | No. of ROI Nodes | Time Cost (s) | Target Size (mm) | Error of Target Size | Reconstruction Error |
---|---|---|---|---|---|
Full-zone | 4489 | 7730 | 3.23 | - | - |
Localized | 328 | 49 | 3.22 | 0.31% | 3.72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jiang, H. Enhancing Finite Element-Based Photoacoustic Tomography by Localized Reconstruction Method. Photonics 2022, 9, 337. https://doi.org/10.3390/photonics9050337
Sun Y, Jiang H. Enhancing Finite Element-Based Photoacoustic Tomography by Localized Reconstruction Method. Photonics. 2022; 9(5):337. https://doi.org/10.3390/photonics9050337
Chicago/Turabian StyleSun, Yao, and Huabei Jiang. 2022. "Enhancing Finite Element-Based Photoacoustic Tomography by Localized Reconstruction Method" Photonics 9, no. 5: 337. https://doi.org/10.3390/photonics9050337
APA StyleSun, Y., & Jiang, H. (2022). Enhancing Finite Element-Based Photoacoustic Tomography by Localized Reconstruction Method. Photonics, 9(5), 337. https://doi.org/10.3390/photonics9050337