Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Preparation and Exposition to NIR Radiation
2.2. Experimental Setup
2.3. Experimental Protocol
2.4. Cell-Free Hemoglobin Measurement
2.5. Hemolysis Curve and Determination of Osmotic Fragility
2.6. Hematocrit
2.7. Peroxidation of Red Blood Cell Membrane Lipids
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Depner, T.; Garred, L. Solute transport mechanisms in dialysis. In Replacement of Renal Function by Dialysis; Horl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F., Eds.; Kluwer Academic Publishers BV: Dordrecht, The Netherlands, 2004; Volume 1, pp. 73–94. [Google Scholar]
- Himmelfarb, J.; Ikizler, T.A. Hemodialysis. N. Engl. J. Med. 2010, 363, 1833–1845. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoya, G.; Klemm, A.; Baumann, E.; Vogelsang, H.; Ott, U.; Linss, W.; Stein, G. Determination of autofluorescence of red blood cells (RbCs) in uremic patients as a marker of oxidative damage. Clin. Nephrol. 2002, 58, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, L.; Bergamini, S.; Iannone, A.; Perrone, S.; Stipo, L.; Olmeda, F.; Caruso, F.; Tomasi, A.; Albertazzi, A. Erythrocyte susceptibility to oxidative stress in chronic renal failure patients under different substitutive treatments. Artif. Organs 2005, 29, 67–72. [Google Scholar] [CrossRef]
- Polaschegg, H.D. Red blood cell damage from extracorporeal circulation in hemodialysis. Semin. Dial. 2009, 22, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Liakopoulos, V.; Roumeliotis, S.; Zarogiannis, S.; Eleftheriadis, T.; Mertens, P.R. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin. Dial. 2019, 32, 58–71. [Google Scholar] [CrossRef]
- Liakopoulos, V.; Roumeliotis, S.; Gorny, X.; Dounousi, E.; Mertens, P.R. Oxidative Stress in Hemodialysis Patients: A Review of the Literature. Oxidative Med. Cell. Longev. 2017, 2017, 3081856. [Google Scholar] [CrossRef]
- Himmelfarb, J. Uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy. Semin. Dial. 2009, 22, 636–643. [Google Scholar] [CrossRef]
- Morena, M.; Delbosc, S.; Dupuy, A.M.; Canaud, B.; Cristol, J.P. Overproduction of reactive oxygen species in end-stage renal disease patients: A potential component of hemodialysis-associated inflammation. Hemodial. Int. 2005, 9, 37–46. [Google Scholar] [CrossRef]
- Bujok, J.; Walski, T.; Czerski, A.; Gałecka, K.; Grzeszczuk-Kuć, K.; Zawadzki, W.; Witkiewicz, W.; Komorowska, M. Sheep model of haemodialysis treatment. Lab. Anim. 2018, 52, 176–185. [Google Scholar] [CrossRef]
- Kroll, M.; Hellums, J.D.; Mclntire, L.V.; Schafer, A.; Moake, J. Platelets and shear stress. Blood 1996, 88, 1541–1545. [Google Scholar] [CrossRef] [Green Version]
- Spijker, H.T.; Graaff, R.; Boonstra, P.W.; Busscher, H.J.; van Oeveren, W. On the influence of flow conditions and wettability on blood material interactions. Biomaterials 2003, 24, 4717–4727. [Google Scholar] [CrossRef]
- Vercaemst, L. Hemolysis in Cardiac Surgery Patients Undergoing Cardiopulmonary Bypass: A Review in Search of a Treatment Algorithm. JECT 2008, 40, 257–267. [Google Scholar]
- Kameneva, M.V.; Burgreen, G.W.; Kono, K.; Repko, B.; Antaki, J.F.; Umezu, M. Effects of turbulent stresses upon mechanical hemolysis: Experimental and computational analysis. ASAIO J. 2004, 50, 418–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrales, P. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, 1206–1215. [Google Scholar] [CrossRef]
- Poyton, R.O.; Ball, K.A. Therapeutic photobiomodulation: Nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov. Med. 2011, 11, 154–159. [Google Scholar]
- Roelandts, R. The history of photochemotherapy. Photodermatol. Photoimmunol. Photomed. 1991, 8, 184–189. [Google Scholar]
- Mester, E.; Szende, B.; Tota, J.G. Effect of laser on hair growth of mice. Kiserl. Orv. 1967, 19, 628–631. [Google Scholar]
- Huang, Y.Y.; Chen, A.C.; Carroll, J.D.; Hamblin, M.R. Biphasic dose response in low level light therapy. Dose Response 2009, 7, 358–383. [Google Scholar] [CrossRef]
- Karu, T.I. Low power laser therapy. In Biomedical Photonics Handbook; Vo-Dinh, T., Ed.; CRC Press: Boca Raton, FL, USA, 2003; Volume 1, pp. 1233–1257. [Google Scholar]
- Vladimirov, Y.A.; Osipov, A.N.; Klebanov, G.I. Photobiological principles of therapeutic applications of laser radiation. Biochemistry 2004, 69, 81–90. [Google Scholar] [CrossRef]
- Cotler, H.B.; Chow, R.T.; Hamblin, M.R.; Carroll, J. The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain. MOJ Orthop. Rheumatol. 2015, 2, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Walski, T.; Dąbrowska, K.; Drohomirecka, A.; Jędruchniewicz, N.; Trochanowska-Pauk, N.; Witkiewicz, W.; Komorowska, M. The effect of red-to-near-infrared (R/NIR) irradiation on inflammatory processes. Int. J. Radiat. Biol. 2019, 95, 1326–1336. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, M.; Czyżewska, H. The effect of near-infrared radiation on erythrocyte membranes: EPR study. Nukleonika 1997, 42, 379–386. [Google Scholar]
- Komorowska, M.; Cuissot, A.; Czarnołeski, A.; Białas, W. Erythrocyte response to near-infrared radiation. J. Photochem. Photobiol. B 2002, 68, 93–100. [Google Scholar] [CrossRef]
- Chludzińska, L.; Ananicz, E.; Jarosławska, A.; Komorowska, M. Near-infrared radiation protects the red cell membrane against oxidation. Blood Cells Mol. Dis. 2005, 35, 74–79. [Google Scholar] [CrossRef]
- Walski, T.; Dyrda, A.; Dzik, M.; Chludzińska, L.; Tomków, T.; Mehl, J.; Detyna, J.; Gałecka, K.; Witkiewicz, W.; Komorowska, M. Near infrared light induces post-translational modifications of human red blood cell proteins. Photochem. Photobiol. Sci. 2015, 14, 2035–2045. [Google Scholar] [CrossRef]
- Walski, T.; Grzeszczuk-Kuć, K.; Gałecka, K.; Trochanowska-Pauk, N.; Bohara, R.; Czerski, A.; Szułdrzyński, K.; Królikowski, W.; Detyna, J.; Komorowska, M. Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Sci. Rep. 2022, 12, 4042. [Google Scholar] [CrossRef]
- Walski, T.; Drohomirecka, A.; Bujok, J.; Czerski, A.; Wąż, G.; Trochanowska-Pauk, N.; Gorczykowski, M.; Cichoń, R.; Komorowska, M. Low-Level Light Therapy Protects Red Blood Cells against Oxidative Stress and Hemolysis during Extracorporeal Circulation. Front. Physiol. 2018, 9, 64756. [Google Scholar] [CrossRef]
- Drohomirecka, A.; Iwaszko, A.; Walski, T.; Pliszczak-Król, A.; Wąż, G.; Graczyk, S.; Gałecka, K.; Czerski, A.; Bujok, J.; Komorowska, M. Low-level light therapy reduces platelet destruction during extracorporeal circulation. Sci. Rep. 2018, 8, 16963, Erratum in Sci. Rep. 2019, 9, 735. [Google Scholar] [CrossRef]
- Schardong, J.; Falster, M.; Sisto, I.R.; Barbosa, A.P.O.; Normann, T.C.; de Souza, K.S.; Jaroceski, G.; Bozzetto, C.B.; Baroni, B.M.; Plentz, R.D.M. Photobiomodulation therapy increases functional capacity of patients with chronic kidney failure: Randomized controlled trial. Lasers Med. Sci. 2021, 36, 119–129. [Google Scholar] [CrossRef]
- Pavesi, V.C.S.; Martins, M.D.; Coracin, F.L.; Sousa, A.S.; Pereira, B.J.; Prates, R.A.; da Silva, J.F.; Gonçalves, M.L.L.; Bezerra, C.D.S.; Bussadori, S.K.; et al. Effects of photobiomodulation in salivary glands of chronic kidney disease patients on hemodialysis. Lasers Med. Sci. 2021, 36, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Walski, T.; Chludzińska, L.; Komorowska, M.; Witkiewicz, W. Individual osmotic fragility distribution: A new parameter for determination of the osmotic properties of human red blood cells. Biomed Res. Int. 2014, 2014, 162102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleszko, A.; Olsztyńska-Janus, S.; Walski, T.; Grzeszczuk-Kuć, K.; Bujok, J.; Gałecka, K.; Czerski, A.; Witkiewicz, W.; Komorowska, M. Application of FTIR-ATR Spectroscopy to Determine the Extent of Lipid Peroxidation in Plasma during Haemodialysis. Biomed Res. Int. 2015, 2015, 245607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candan, F.; Gültekin, F.; Candan, F. Effect of vitamin C and zinc on osmotic fragility and lipid peroxidation in zinc-deficient haemodialysis patients. Cell Biochem. Funct. 2002, 20, 95–98. [Google Scholar] [CrossRef]
- Locatelli, F.; Aljama, P.; Bárány, P.; Canaud, B.; Carrera, F.; Eckardt, K.U.; Hörl, W.H.; Macdougal, I.C.; Macleod, A.; Więcek, A.; et al. Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. European Best Practice Guidelines Working Group. Nephrol. Dial. Transplant. 2004, 19 (Suppl. S2), 1–47. [Google Scholar] [CrossRef]
- Baaten, C.C.F.M.J.; Schröer, J.R.; Floege, J.; Marx, N.; Jankowski, J.; Berger, M.; Noels, H. Platelet Abnormalities in CKD and Their Implications for Antiplatelet Therapy. Clin. J. Am. Soc. Nephrol. 2022, 17, 155–170. [Google Scholar] [CrossRef]
- Nguyen-Khoa, T.; Massy, Z.A.; De Bandt, J.P.; Kebede, M.; Salama, L.; Lambrey, G.; Witko-Sarsat, V.; Drüeke, T.B.; Lacour, B.; Thévenin, M. Oxidative stress and haemodialysis: Role of inflammation and duration of dialysis treatment. Nephrol. Dial. Transplant. 2001, 16, 335–340. [Google Scholar] [CrossRef]
- Paul, J.L.; Sall, N.D.; Soni, T.; Poignet, J.L.; Lindenbaum, A.; Man, N.K.; Moatti, N.; Raichvarg, D. Lipid peroxidation abnormalities in hemodialyzed patients. Nephron 1993, 64, 106–109. [Google Scholar] [CrossRef]
- McGrath, L.T.; Douglas, A.F.; McClean, E.; Brown, J.H.; Doherty, C.C.; Johnston, G.D.; Archbold, G.P. Oxidative stress and erythrocyte membrane fluidity in patients undergoing regular dialysis. Clin. Chim. Acta 1995, 235, 179–188. [Google Scholar] [CrossRef]
- González Rico, M.; Puchades, M.J.; García Ramón, R.; Saez, G.; Tormos, M.C.; Miguel, A. Effect of oxidative stress in patients with chronic renal failure. Nefrologia 2006, 26, 218–225. [Google Scholar]
- Szikszai, Z.; Ujhelyi, L.; Imre, S.G. Effect of hemodialysis on the deformability and lipid peroxidation of erythrocytes in chronic renal failure. Clin. Hemorheol. Microcirc. 2003, 28, 201–207. [Google Scholar] [PubMed]
- Rosenmund, A.; Binswanger, U.; Straub, P.W. Oxidative injury to erythrocytes, cell rigidity, and splenic hemolysis in hemodialyzed uremic patients. Ann. Intern. Med. 1975, 82, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F.F.; Ghannam, M.M.; Ali, F.M. Effect of dialysis on erythrocyte membrane of chronically hemodialyzed patients. Ren. Fail. 2002, 24, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Izumo, H.; Izumo, S.; DeLuise, M.; Flier, J.S. Erythrocyte Na,K pump in uremia. Acute correction of a transport defect by hemodialysis. J. Clin. Investig. 1984, 74, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Bogin, E.; Massry, S.G.; Levi, J.; Djaldeti, M.; Bristol, G.; Smith, J. Effect of parathyroid hormone on osmotic fragility of human erythrocytes. J. Clin. Investig. 1982, 69, 1017–1025. [Google Scholar] [CrossRef]
- Akmal, M.; Telfer, N.; Ansari, A.N.; Massry, S.G. Erythrocyte survival in chronic renal failure. Role of secondary hyperparathyroidism. J. Clin. Investig. 1985, 76, 1695–1698. [Google Scholar] [CrossRef] [Green Version]
- Docci, D.; del Vecchio, C.; Salvi, P.; Turci, F.; Salvi, G.; Cenciotti, L.; Pretolani, E. Osmotic fragility of erythrocytes, cell deformability and secondary hyperparathyroidism in uremic patients on maintenance hemodialysis. Clin. Nephrol. 1985, 23, 68–73. [Google Scholar]
- Marjani, A.; Moradi, A.; Veghari, G.; Ahmadi, A. Effect of Dialysis on Plasma Lipid Peroxidation and Lipid Profile in Haemodialysis Patients. Asian J. Cell Biol. 2007, 2, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Lucchi, L.; Ligabue, G.; Marietta, M.; Delnevo, A.; Malagoli, M.; Perrone, S.; Stipo, L.; Grandi, F.; Albertazzi, A. Activation of coagulation during hemodialysis: Effect of blood lines alone and whole extracorporeal circuit. Artif. Organs 2006, 30, 106–110. [Google Scholar] [CrossRef]
- Lucchi, L.; Bergamini, S.; Botti, B.; Rapanà, R.; Ciuffreda, A.; Ruggiero, P.; Ballestri, M.; Tomasi, A.; Albertazzi, A. Influence of different hemodialysis membranes on red blood cell susceptibility to oxidative stress. Artif. Organs 2000, 24, 1–6. [Google Scholar] [CrossRef]
- Kosch, M.; Levers, A.; Fobker, M.; Barenbrock, M.; Schaefer, R.M.; Rahn, K.H.; Hausberg, M. Dialysis filter type determines the acute effect of haemodialysis on endothelial function and oxidative stress. Nephrol. Dial. Transplant. 2003, 18, 1370–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zwieten, R.; Verhoeven, A.J.; Roos, D. Inborn defects in the antioxidant systems of human red blood cells. Free Radic. Biol. Med. 2014, 67, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Fillipin, L.I.; Mauriz, J.L.; Vedovelli, K.; Moreira, A.J.; Zettler, C.G.; Lech, O.; Marroni, N.P.; González-Gallego, J. Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg. Med. 2005, 37, 293–300. [Google Scholar] [CrossRef]
- Scalon, D.; Picada, J.N.; de Sousa, J.T.; da Silva, A.T.; Colares, J.R.; Marroni, N.A.P. Photobiomodulation intervention improves oxidative, inflammatory, and morphological parameters of skeletal muscle in cirrhotic Wistar rats. Lasers Med. Sci. 2021, 37, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, M.; Czarnołęski, A. Near-infrared induced membrane surface electrostatic potential, fluorescent measurements. Colloids Surf. B Biointerfaces 2001, 20, 309–314. [Google Scholar] [CrossRef]
- Komorowska, M.; Gałwa, M.; Wesołowska, U. Hydration effects under near-infrared radiation. Colloids Surf. B 2002, 26, 223–233. [Google Scholar] [CrossRef]
- Olsztynska, S.; Komorowska, M.; Dupuy, N. Influence of near-infrared radiation on the pKa values of L-phenylalanine. Appl. Spectrosc. 2006, 60, 648–652. [Google Scholar] [CrossRef]
- Olsztyńska-Janus, S.; Komorowska, M. Conformational changes of L-phenylalanine induced by near infrared radiation. ATR-FTIR studies. Struct. Chem. 2012, 23, 1399–1407. [Google Scholar] [CrossRef]
- Olsztyńska-Janus, S.; Gąsior-Głogowska, M.; Szymborska-Małek, K.; Czarnik-Matusewicz, B.; Komorowska, M. Specific applications of vibrational spectroscopy in biomedical engineering. In Biomedical Engineering, Trends, Research and Technologies; Komorowska, M., Olsztyńska-Janus, S., Eds.; InTech: Rijeka, Croatia, 2011; Chapter 4; pp. 91–120. [Google Scholar]
- Szymborska-Małek, K.; Komorowska, M.; Gąsior-Głogowska, M. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 188, 258–267. [Google Scholar] [CrossRef]
- Natzle, W.C.; Moore, C.B. Recombination of hydrogen ion (H+) and hydroxide in pure liquid water. J. Phys. Chem. 1985, 89, 2605–2612. [Google Scholar] [CrossRef]
- Phillips, G.R.; Eyring, E.M. Pulsed-laser conductivity study of recombination kinetics of proton and hydroxide in alcohol water/liquid mixtures. J. Phys. Chem. 1986, 90, 316–319. [Google Scholar] [CrossRef]
- Knight, B.; Goodall, D.M.; Greenhow, R.C. Single-photon vibrational photochemistry. Part 1.Wavelength and temperature dependence of the quantum yield for the laser induced ionization of water. J. Chem. Soc. Faraday Trans. 2 1979, 75, 841–856. [Google Scholar] [CrossRef]
- Cytlak, U.; Dzik, M.; Walski, T.; Gałecka, K.; Komorowska, M. The Hemoglobin Deformation Induced By Near Infrared Radiation—Spin Label Study. Curr. Top. Biophys. 2010, 33 (Suppl. SA), 33–37. [Google Scholar]
- Jennings, M.L. Cell physiology and molecular mechanism of anion transport by erythrocyte band 3/AE1. Am. J. Physiol.-Cell Physiol. 2021, 321, C1028–C1059. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.A.; Giuseppe, P.O.; Souza, T.A.; Alegria, T.G.; Oliveira, M.A.; Netto, L.E.; Murakami, M.T. How pH modulates the dimer-decamer interconversion of 2-Cys peroxiredoxins from the Prx1 subfamily. J. Biol. Chem. 2015, 290, 8582–8590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, S.; Rocha-Pereira, P.; Cleto, E.; Ferreira, F.; Belo, L.; Santos-Silva, A. Linkage of typically cytosolic peroxidases to erythrocyte membrane—A possible mechanism of protection in Hereditary Spherocytosis. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183172. [Google Scholar] [CrossRef]
- Low, F.M.; Hampton, M.B.; Peskin, A.V.; Winterbourn, C.C. Peroxiredoxin 2 functions as a noncatalytic scavenger of low-level hydrogen peroxide in the erythrocyte. Blood 2007, 109, 2611–2617. [Google Scholar] [CrossRef]
Wavelength Range [nm] | 750–1100; Noncoherent and Polychromatic Light |
---|---|
Irradiance (mW/cm2) | 5.2 |
Power (mW) | 146 |
Continuous-wave mode | No |
Pulse sequence | Not applicable |
No of pulses | 1 |
Irradiation time (sec) | 900 |
Spot area (cm2) | 28 |
Energy (J) | 131.4 |
Fluence (J/cm2) | 4.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walski, T.; Grzeszczuk-Kuć, K.; Berlik, W.; Synal-Kulczak, I.; Bohara, R.; Detyna, J.; Komorowska, M. Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro. Photonics 2022, 9, 341. https://doi.org/10.3390/photonics9050341
Walski T, Grzeszczuk-Kuć K, Berlik W, Synal-Kulczak I, Bohara R, Detyna J, Komorowska M. Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro. Photonics. 2022; 9(5):341. https://doi.org/10.3390/photonics9050341
Chicago/Turabian StyleWalski, Tomasz, Karolina Grzeszczuk-Kuć, Weronika Berlik, Izabela Synal-Kulczak, Raghvendra Bohara, Jerzy Detyna, and Małgorzata Komorowska. 2022. "Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro" Photonics 9, no. 5: 341. https://doi.org/10.3390/photonics9050341
APA StyleWalski, T., Grzeszczuk-Kuć, K., Berlik, W., Synal-Kulczak, I., Bohara, R., Detyna, J., & Komorowska, M. (2022). Effect of Near-Infrared Blood Photobiomodulation on Red Blood Cell Damage from the Extracorporeal Circuit during Hemodialysis In Vitro. Photonics, 9(5), 341. https://doi.org/10.3390/photonics9050341