Enhanced Gamma-Ray Attenuation-Based Detection System Using an Artificial Neural Network
Abstract
:1. Introduction
2. Proposed Method
2.1. Simulation Setup
2.2. Discrete Wavelet Transform
2.3. Artificial Neural Network
- A.
- Weights take random values
- B.
- Perceptron is applied for each training sample. If the samples are misjudged, the perceptron weight values are corrected.
- C.
- Is all training evaluated correctly?
- D.
- Yes, the end of the algorithm.
- E.
- No, back to step B.
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salgado, C.M.; Salgado, W.L.; Dam, R.S.D.F.; Conti, C.C. Calculation of scales in oil pipeline using gamma-ray scattering and artificial intelligence. Measurement 2021, 179, 109455. [Google Scholar] [CrossRef]
- Affonso, R.R.; Dam, R.S.; Salgado, W.L.; Silva, A.X.D.; Salgado, C.M. Flow regime and volume fraction identification using nuclear techniques, artificial neural networks and computational fluid dynamics. Appl. Radiat. Isot. 2020, 159, 109103. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, M.; Sattari, M.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E. Application of Gamma Attenuation Technique and Artificial Intelligence to Detect Scale Thickness in Pipelines in Which Two-Phase Flows with Different Flow Regimes and Void Fractions Exist. Symmetry 2021, 13, 1198. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH neural network. Radiat. Phys. Chem. 2020, 171, 108725. [Google Scholar] [CrossRef]
- Kamari, A.; Gharagheizi, F.; Bahadori, A.; Mohammadi, A.H. Rigorous modeling for prediction of barium sulfate (barite) deposition in oilfield brines. Fluid Phase Equilibria 2014, 366, 117–126. [Google Scholar] [CrossRef]
- Åbro, E.; Johansen, G.A. Improved void fraction determination by means of multibeam gamma-ray attenuation measurements. Flow Meas. Instrum. 1999, 10, 99–108. [Google Scholar] [CrossRef]
- Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Peyvandi, R.G.; Setayeshi, S. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Mayet, A.M.; Salama, A.S.; Alizadeh, S.M.; Nesic, S.; Guerrero, J.W.G.; Eftekhari-Zadeh, E.; Nazemi, E.; Iliyasu, A.M. Applying Data Mining and Artificial Intelligence Techniques for High Precision Measuring of the Two-Phase Flow’s Characteristics Independent of the Pipe’s Scale Layer. Electronics 2022, 11, 459. [Google Scholar] [CrossRef]
- Chunguo, J.; Qiuguo, B. Flow regime identification of gas/liquid two-phase flow in vertical pipe using RBF neural networks. In Proceedings of the Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 5143–5147. [Google Scholar]
- Peyvandi, R.G.; Rad, S.Z.I. Application of artificial neural networks for the prediction of volume fraction using spectra of gamma rays backscattered by three-phase flows. Eur. Phys. J. Plus 2017, 132, 1–8. [Google Scholar]
- Taylan, O.; Abusurrah, M.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; Roshani, G.H. Proposing an Intelligent Dual-Energy Radiation-Based System for Metering Scale Layer Thickness in Oil Pipelines Containing an Annular Regime of Three-Phase Flow. Mathematics 2021, 9, 2391. [Google Scholar] [CrossRef]
- Roshani, G.; Nazemi, E.; Roshani, M. Identification of flow regime and estimation of volume fraction independent of liquid phase density in gas-liquid two-phase flow. Prog. Nucl. Energy 2017, 98, 29–37. [Google Scholar] [CrossRef]
- Roshani, G.H.; Nazemi, E.; Feghhi, S.A.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows based on gamma ray attenuation. Measurment 2015, 62, 25–32. [Google Scholar] [CrossRef]
- Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrogen Energy 2016, 41, 7438–7444. [Google Scholar] [CrossRef]
- Gholam, H.R.; Ehsan, N.; Farzin, S.; Mohammad, A.I.; Salar, M. Designing a simple radiometric system to predict void fraction percentage independent of flow pattern using radial basis function. Metrol. Meas. Syst. 2018, 25, 347–358. [Google Scholar]
- Roshani, G.H.; Karami, A.; Nazemi, E.; Shama, F. Volume fraction determination of the annular three-phase flow of gas-oil-water using adaptive neuro-fuzzy inference system. Comput. Appl. Math. 2018, 37, 4321–4341. [Google Scholar] [CrossRef]
- Roshani, G.; Karami, A.; Khazaei, A.; Olfateh, A.; Nazemi, E.; Omidi, M. Optimization of radioactive sources to achieve the highest precision in three-phase flow meters using Jaya algorithm. Appl. Radiat. Isot. 2018, 139, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Nazemi, E.; Eftekhari-Zadeh, E.; Kalmoun, E.M. Feasibility Study of Using X-ray Tube and GMDH for Measuring Volume Fractions of Annular and Stratified Regimes in Three-Phase Flows. Symmetry 2021, 13, 613. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Petryka, L.; Jaszczur, M.; Hanus, P. Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 1: Time domain. In Proceedings of the EFM15—Experimental Fluid Mechanics, Prague, Czech Republic, 17–20 November 2016; p. 02035. [Google Scholar]
- Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
- Hanus, R.; Zych, M.; Petryka, L.; Jaszczur, M.; Hanus, P. Signals features extraction in liquid-gas flow measurements using gamma densitometry. Part 2: Frequency domain. In Proceedings of the EFM15—Experimental Fluid Mechanics, Prague, Czech Republic, 17–20 November 2016; p. 02036. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Roshani, G.; Setayeshi, S. Precise gamma based two-phase flow meter using frequency feature extraction and only one detector. Flow Meas. Instrum. 2020, 72, 101693. [Google Scholar] [CrossRef]
- Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of Discrete Wavelet Transform for Feature Extraction to Increase the Accuracy of Monitoring Systems of Liquid Petroleum Products. Mathematics 2021, 9, 3215. [Google Scholar] [CrossRef]
- Roshani, G.H.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; et al. Simulation Study of Utilizing X-ray Tube in Monitoring Systems of Liquid Petroleum Products. Processes 2021, 9, 828. [Google Scholar] [CrossRef]
- Taylan, O.; Sattari, M.A.; Essoussi, I.E.; Nazemi, E. Frequency Domain Feature Extraction Investigation to Increase the Accuracy of an Intelligent Nondestructive System for Volume Fraction and Regime Determination of Gas-Water-Oil Three-Phase Flows. Mathematics 2021, 9, 2091. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]
- Basahel, A.; Sattari, M.; Taylan, O.; Nazemi, E. Application of Feature Extraction and Artificial Intelligence Techniques for Increasing the Accuracy of X-ray Radiation Based Two Phase Flow Meter. Mathematics 2021, 9, 1227. [Google Scholar] [CrossRef]
- The Record. Available online: https://www.therecord.com/news/waterloo-region/2015/01/21/aging-water-system-in-kitchener-means-big-rate-hikes-or-more-water-main-breaks.html (accessed on 1 January 2022).
- Übeylı, E.D.; Güler, İ. Feature extraction from Doppler ultrasound signals for automated diagnostic systems. Comput. Biol. Med. 2005, 35, 735–764. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef] [Green Version]
- Soltani, S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48, 267–277. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Taram, M.K.; Eskandari, N. Blokus Duo game on FPGA. In Proceedings of the 17th CSI International Symposium on Computer Architecture & Digital Systems (CADS), Tehran, Iran, 30–31 October 2013; pp. 149–152. [Google Scholar]
- Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design of a Compact Planar Transmission Line for Miniaturized Rat-Race Coupler with Harmonics Suppression. IEEE Access 2021, 9, 129207–129217. [Google Scholar] [CrossRef]
- Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22252. [Google Scholar] [CrossRef]
- Roshani, S.; Roshani, S. A compact coupler design using meandered line compact microstrip resonant cell (MLCMRC) and bended lines. Wirel. Netw. 2021, 27, 677–684. [Google Scholar] [CrossRef]
- Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics suppression using open and short stubs. Frequenz 2020, 74, 169–176. [Google Scholar] [CrossRef]
- Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [Google Scholar] [CrossRef]
- Roshani, S.; Roshani, S. Two-section impedance transformer design and modeling for power amplifier applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047. [Google Scholar]
- Chapnevis, A.; Güvenç, I.; Bulut, E. Traffic Shifting based Resource Optimization in Aggregated IoT Communication. In Proceedings of the IEEE 45th Conference on Local Computer Networks (LCN), Sydney, NSW, Australia, 16–19 November 2020; pp. 233–243. [Google Scholar]
- Shiri, A. A Novel Implementation of CORDIC Algorithm Based on Dynamic Microrotation Generation. Mapta J. Electr. Comput. Eng. 2021, 3, 17–27. [Google Scholar]
- Sabzi, M.; Kamarei, M.; Razban, T.; Mahe, Y. New noise cancellation topology in common-gate LNAs. Microelectron. J. 2020, 100, 104800. [Google Scholar] [CrossRef]
- Sabzi, M.; Kamarei, M.; Haghighi, T.R.; Mahé, Y. Analysis and Design of X-Band LNA Using Parallel Technique. In Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 26–28 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sadri, S.; Tomar, N.; Yang, C.; Audi, S.H.; Cowley, A.W.; Dash, R.K. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic. Res. 2020, 54, 695–721. [Google Scholar] [CrossRef]
- Pejman, R.; Maghami, E.; Najafi, A.R. How to design a blockage-tolerant cooling network? Appl. Therm. Eng. 2020, 181, 115916. [Google Scholar] [CrossRef]
- Lotfi, F.; Semiari, O. Performance Analysis and Optimization of Uplink Cellular Networks with Flexible Frame Structure. In Proceedings of the IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5. [Google Scholar]
- Dizadji, M.R.; Yousefi-Koma, A.; Gharehnazifam, Z. 3-Axis Attitude Control of Satellite using Adaptive Direct Fuzzy Controller. In Proceedings of the 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran, 23–25 October 2018; pp. 1–5. [Google Scholar]
- Rouhi, S.; Xiros, N.; Aktosun, E.; Sultan, C.; VanZwieten, J.; Ioup, J.; Sadeqi, S. A Small-Scale Experimental Ocean Current Turbine Apparatus for Power Measurement. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, 1–5 November 2021. [Google Scholar]
- Neya, N.M.; Saberi, S.; Rezaie, B. Design of an adaptive controller to capture maximum power from a variable speed wind turbine system without any prior knowledge of system parameters. Trans. Inst. Meas. Control 2021, 44, 609–619. [Google Scholar] [CrossRef]
- Rouhi, S.; Xiros, N.; Sadeqi, S.; Ioup, J.; Sultan, C.; VanZwieten, J. CFD Validation of the Thermodynamics Model of a Compressed Gaseous Hydrogen Storage Tank. In Proceedings of the 5–6th Thermal and Fluids Engineering Conference (TFEC), New Orleans, LA, USA, 26–28 May 2021. [Google Scholar]
- Aghajanian, A.; Thomas, C.; Behfarnia, K. Effect of Micro-Silica Addition into Electric Arc Furnace Steel Slag Eco-Efficient Concrete. Appl. Sci. 2021, 11, 4893. [Google Scholar] [CrossRef]
- Shirkhanloo, S.; Najafi, M.; Kaushal, V.; Rajabi, M. A Comparative Study on the Effect of Class C and Class F Fly Ashes on Geotechnical Properties of High-Plasticity Clay. CivilEng 2021, 2, 1009–1018. [Google Scholar] [CrossRef]
- Khodabandelu, A.; Park, J. Agent-based modeling and simulation in construction. Autom. Constr. 2021, 131, 103882. [Google Scholar] [CrossRef]
- Khodabandelu, A.; Choi, J.O.; Park, J.; Sanei, M. Developing a simulation model for lifting a modular house. In Proceedings of the Construction Research Congress 2020: Computer Applications, Tampa, AZ, USA, 8–10 March 2020; pp. 145–152. [Google Scholar]
- Maghami, E.; Pejman, R.; Najafi, A.R. Fracture micromechanics of human dentin: A microscale numerical model. J. Mech. Behav. Biomed. Mater. 2020, 114, 104171. [Google Scholar] [CrossRef]
- Ashrafi, R.; Azarbayjani, M.; Cox, R.; Futrell, B.; Glass, J.; Zarrabi, A.; Amirazar, A. Assessing the Performance of UFAD System in an Office Building Located in Various Climate Zones. In Proceedings of the Symposium on Simulation for Architecture and Urban Design, Atlanta, GA, USA, 7–9 April 2019. [Google Scholar]
- Mohaghegh, M.; Valipour, A.S. Triggering Economic Growth:Trade Liberalization as the Prominent Factor in Less-developed Countries. Bus. Econ. Res. 2021, 11, 252–265. [Google Scholar] [CrossRef]
- Su, L.; Shi, W.; Chen, X.; Meng, L.; Yuan, L.; Chen, X.; Huang, G. Simultaneously and quantitatively analyze the heavy metals in Sargassum fusiforme by laser-induced breakdown spectroscopy. Food Chem. 2020, 338, 127797. [Google Scholar] [CrossRef] [PubMed]
- Mohaghegh, M.; Valipour, A. Income-dependent impacts of financial development and human capital on economic growth. A non-stationary panel analysis. Theor. Appl. Econ. 2020, 27, 263–274. [Google Scholar]
- Azad, F.A.; Rad, S.A.; Yazdi, M.R.H.; Masouleh, M.T.; Kalhor, A. Dynamics analysis, offline–online tuning and identification of base inertia parameters for the 3-DOF Delta parallel robot under insufficient excitations. Meccanica 2022, 57, 1–34. [Google Scholar] [CrossRef]
- Daihong, J.; Sai, Z.; Lei, D.; Yueming, D. Multi-scale generative adversarial network for image super-resolution. Soft Comput. 2022, 26, 3631–3641. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, J.; Zhang, X.Y.; So, D.K.C.; Jin, S.; Wong, K.-K. Hybrid Evolutionary-Based Sparse Channel Estimation for IRS-Assisted mmWave MIMO Systems. IEEE Trans. Wirel. Commun. 2021, 21, 1586–1601. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, Q.; Zhou, G. Adaptive Output Feedback Control for Stochastic Uncertain Nonlinear Time-delay Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 106, 1. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X. Broadband cancellation method in an adaptive co-site interference cancellation system. Int. J. Electron. 2021, 109, 854–874. [Google Scholar] [CrossRef]
- Cai, L.; Xiong, L.; Cao, J.; Zhang, H.; Alsaadi, F.E. State quantized sampled-data control design for complex-valued memristive neural networks. J. Frankl. Inst. 2022, in press. [Google Scholar] [CrossRef]
- Wang, K.; Wang, H.; Li, S. Renewable quantile regression for streaming datasets. Knowl. Based Syst. 2021, 235, 107675. [Google Scholar] [CrossRef]
- Li, Y.; Du, L.; Wei, D. Multiscale CNN Based on Component Analysis for SAR ATR. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, C.; Zheng, L.; Xu, K. ROSEFusion: Random optimization for online dense reconstruction under fast camera motion. ACM Trans. Graph. 2021, 40, 1–17. [Google Scholar] [CrossRef]
- Taylor, J.G. Neural Networks and Their Applications; John Wiley & Sons Ltd.: Brighton, UK, 1996. [Google Scholar]
- Gallant, A.R.; White, H. On learning the derivatives of an unknown mapping with multilayer feedforward networks. Neural Netw. 1992, 5, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, T.H.; Seely, J.F. Laser-produced X-ray sources. Radiat. Phys. Chem. 2010, 79, 132–138. [Google Scholar]
- Eftekhari-Zadeh, E.; Blümcke, M.S.; Samsonova, Z.; Loetzsch, R.; Uschmann, I.; Zapf, M.; Ronning, C.; Rosmej, O.N.; Kartashov, D.; Spielmann, C. Laser energy absorption and x-ray generation in nanowire arrays irradiated by relativistically intense ultra-high contrast femtosecond laser pulses. Phys. Plasmas 2022, 29, 013301. [Google Scholar] [CrossRef]
- Hollinger, R.; Bargsten, C.; Shlyaptsev, V.N.; Kaymak, V.; Pukhov, A.; Capeluto, M.G.; Wang, S.; Rockwood, A.; Wang, Y.; Townsend, A.; et al. Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica 2017, 4, 1344–1349. [Google Scholar] [CrossRef]
- Roshani, M.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.-H.; Tran, H.-N.; Nazemi, E. X-ray tube with artificial neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radiat. Isot. 2020, 164, 109255. [Google Scholar] [CrossRef]
- Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [Google Scholar] [CrossRef]
ANN | MLP | MLP |
---|---|---|
output | Scale thickness | Flow regime |
Number of input neurons | 5 | 5 |
Number of hidden layers | 1 | 1 |
Number of neurons in the hidden layer | 10 | 15 |
Number of output neurons | 1 | 1 |
Number of epochs | 680 | 780 |
Hidden layer activation function | Tansig | Tansig |
Data Set | RMSE | MSE |
---|---|---|
Training dataset | 0.052 | 0.0027 |
Validation dataset | 0.05 | 0.0025 |
Testing dataset | 0.06 | 0.0036 |
Ref | Extracted Features | Type of Neural Network | MSE | RMSE | ||
---|---|---|---|---|---|---|
Training | Testing | Training | Testing | |||
[3] | Lack of feature extraction | RBF | 0.049 | 0.37 | 0.22 | 0.19 |
[4] | Time-domain | GMDH | 1.24 | 1.20 | 1.11 | 1.09 |
[10] | Lack of feature extraction | MLP | 2.56 | 2.56 | 1.6 | 1.6 |
[20] | Time-domain | MLP | 0.21 | 0.036 | 0.46 | 0.6 |
[22] | Frequency-domain | MLP | 0.17 | 0.67 | 0.42 | 0.82 |
[73] | Lack of feature extraction | MLP | 17.05 | 9.85 | 4.13 | 3.14 |
[74] | Lack of feature extraction | GMDH | 7.34 | 4.92 | 2.71 | 2.21 |
[current study] | Wavelet feature | MLP | 0.0027 | 0.0036 | 0.052 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eftekhari-Zadeh, E.; Bensalama, A.S.; Roshani, G.H.; Salama, A.S.; Spielmann, C.; Iliyasu, A.M. Enhanced Gamma-Ray Attenuation-Based Detection System Using an Artificial Neural Network. Photonics 2022, 9, 382. https://doi.org/10.3390/photonics9060382
Eftekhari-Zadeh E, Bensalama AS, Roshani GH, Salama AS, Spielmann C, Iliyasu AM. Enhanced Gamma-Ray Attenuation-Based Detection System Using an Artificial Neural Network. Photonics. 2022; 9(6):382. https://doi.org/10.3390/photonics9060382
Chicago/Turabian StyleEftekhari-Zadeh, Ehsan, Abdallah S. Bensalama, Gholam Hossein Roshani, Ahmed S. Salama, Christian Spielmann, and Abdullah M. Iliyasu. 2022. "Enhanced Gamma-Ray Attenuation-Based Detection System Using an Artificial Neural Network" Photonics 9, no. 6: 382. https://doi.org/10.3390/photonics9060382
APA StyleEftekhari-Zadeh, E., Bensalama, A. S., Roshani, G. H., Salama, A. S., Spielmann, C., & Iliyasu, A. M. (2022). Enhanced Gamma-Ray Attenuation-Based Detection System Using an Artificial Neural Network. Photonics, 9(6), 382. https://doi.org/10.3390/photonics9060382