A Table of Some Coherency Matrices, Coherency Matrix Factors, and Their Respective Mueller Matrices
Abstract
:1. Introduction
2. Two Simple Special Cases
2.1. Free Space
2.2. Perfect Depolarizer
3. Table for Diattenuaters
3.1. Elliptic Diattenuater
3.2. Elliptic Diattenuater at
3.3. Elliptic Diattenuater at
3.4. Elliptic Diattenuater at
3.5. Elliptic Diattenuater at
3.6. Linear Diattenuater
3.7. Linear Diattenuater at
3.8. Linear Diattenuater at
3.9. Linear Diattenuater at
3.10. Linear Diattenuater at
3.11. Circular Diattenuater
3.12. Elliptic Polarizer
3.13. Elliptic Polarizer at
3.14. Elliptic Polarizer at
3.15. Elliptic Polarizer at
3.16. Elliptic Polarizer at
3.17. Linear Polarizer
3.18. Linear Polarizer at
3.19. Linear Polarizer at
3.20. Linear Polarizer at
3.21. Linear Polarizer at
3.22. Circular Polarizer
4. Table for Retarders
4.1. Elliptic Retarder
4.2. Elliptic Retarder at
4.3. Elliptic Retarder at
4.4. Elliptic Retarder at
4.5. Elliptic Retarder at
4.6. Quarter-Wave Elliptic Retarder
4.7. Half-Wave Elliptic Retarder
4.8. Linear Retarder
4.9. Linear Retarder at
4.10. Linear Retarder at
4.11. Linear Retarder at
4.12. Linear Retarder at
4.13. Quarter-Wave Linear Retarder
4.14. Quarter-Wave Linear Retarder at
4.15. Quarter-Wave Linear Retarder at
4.16. Quarter-Wave Linear Retarder at
4.17. Quarter-Wave Linear Retarder at
4.18. Half-Wave Linear Retarder (Pseudorotator)
4.19. Half-Wave Linear Retarder at
4.20. Half-Wave Linear Retarder at
4.21. Half-Wave Linear Retarder at
4.22. Half-Wave Linear Retarder at
4.23. Circular Retarder (Rotator, with )
4.24. Quarter-Wave Circular Retarder, Right
4.25. Quarter-Wave Circular Retarder, Left
4.26. Half-Wave Circular Retarder
5. Table for Other Systems
5.1. Elliptic Homogeneous Retarding Diattenuater
5.2. Circular Retarding Diattenuater
5.3. Linear Homogeneous Retarding Diattenuater
5.4. Linear Homogeneous Retarding Diattenuater at (Horizontal)
5.5. Linear Homogeneous Retarding Diattenuater at
5.6. Linear Homogeneous Retarding Diattenuater at
5.7. Linear Homogeneous Retarding Diattenuater at
5.8. Quarter-Wave Elliptic Homogeneous Retarding Diattenuater
5.9. Half-Wave Elliptic Homogeneous Retarding Diattenuater
5.10. Inhomogeneous Right Circular Polarizer
5.11. Normal Reflection from a Dielectric
5.12. Aligned Linear Retarding Diattenuater: ABCD Matrix
5.13. Medium of Scattering Particles Obeying Reciprocity and with a Plane of Symmetry
5.14. Rotationally Symmetric Medium of Asymmetric Scatterers in the Direct Forward Scattering Direction
5.15. Medium of Asymmetric Scatterers in the Exact Backscattering Direction
5.16. Medium of Asymmetric Scatterers in the Non-Exact Backscattering Direction, with Rotational Symmetry of the Medium
5.17. Medium of Asymmetric Scatterers in the Exact Backscattering Direction, with Rotational Symmetry of the Medium
5.18. G-Antisymmetric Mueller Matrix
5.19. G-Symmetric Mueller Matrix
5.20. Symmetric Mueller Matrix
5.21. Canonical Mueller Matrix, Type-I
5.22. Canonical Mueller Matrix, Type-II (Bolshakov)
5.23. Canonical Mueller Matrix, Type-II (Ossikovski 1)
5.24. Canonical Mueller matrix, Type-II (Ossikovski 2)
6. Parameterized Deterministic Mueller Matrix
6.1. Parameterized Deterministic Mueller Matrix
6.2. Parameterized Homogeneous Deterministic Mueller Matrix
6.3. Parameterized Linear Homogeneous Deterministic Mueller Matrix
7. Uniform Deterministic Medium
8. Discussion
Funding
Conflicts of Interest
References
- Gil, J.J.; Ossikovski, R. Polarized Light and the Mueller Matrix Approach; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Shurcliff, W.A. Polarized Light: Production and Use; Harvard University Press: Cambridge, MA, USA, 1962. [Google Scholar]
- Collett, E. Field Guide to Polarization; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar]
- Cloude, S.R. Group theory and polarization algebra. Optik 1986, 75, 26–36. [Google Scholar]
- Cloude, S.R. Conditions for the physical realisability of matrix operators in polarimetry. Proc. SPIE 1989, 116, 177–185. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Cloude, S.R. Depolarization by aerosols: Entropy of the Amsterdam light scattering database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1665–1676. [Google Scholar] [CrossRef]
- Cloude, S.R. Polarization: Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ortega-Quijano, N.; Marvdashti, T.; Ellerbee, A.K. Enhanced depolarization contrast in polarization- sensitive optical coherence tomography. Opt. Lett. 2016, 41, 2350–2353. [Google Scholar] [CrossRef]
- Van Eeckout, A.; Lizana, A.; Garcia-Caurel, E.; Gil, J.J.; Ossikovski, R.; Campos, J. Synthesis and characterization of depolarizing samples based on the indices of polarimetric purity. Opt. Lett. 2017, 42, 4155–4158. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Coherency and differential Mueller matrices for polarizing media. J. Opt. Soc. Am. A 2018, 35, 2058–2069. [Google Scholar] [CrossRef]
- Le Gratiet, A.; Bendandi, A.; Sheppard, C.J.R.; Diaspro, A. Polarimetric optical scanning microscopy of zebrafish embryonic development using the coherency matrix. J. Biophoton. 2021, 14, e202000494. [Google Scholar] [CrossRef]
- Simon, R. Nondepolarizing systems and degree of polarization. Opt. Commun. 1990, 77, 349–354. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Le Gratiet, A.; Diaspro, A. Factorization of the coherency matrix of polarization optics. J. Opt. Soc. Am. A 2018, 35, 586–590. [Google Scholar] [CrossRef]
- Chipman, R.A. Polarization Aberrations. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1987. [Google Scholar]
- Kuntman, E.; Kuntman, M.A.; Arteaga, O. Vector and matrix states for Mueller matrices of nondepolarizing optical media. J. Opt. Soc. Am. A 2017, 34, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Castello, M.; Diaspro, A. Expressions for parallel decomposition of the Mueller matrix. J. Opt. Soc. Am. A 2016, 33, 741–751. [Google Scholar] [CrossRef]
- Parke, N.G., III. Matrix Optics. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1948. [Google Scholar]
- Simon, R. The connection between Mueller and Jones matrices of polarization optics. Opt. Commun. 1982, 42, 293–297. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems. I. Description and discussions of the calculus. J. Opt. Soc. Am. 1941, 31, 488–493. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Parameterization of the Mueller matrix. J. Opt. Soc. Am. A 2016, 33, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H.P.; Schellman, J.A.; Troxell, T. Modulation techniques in polarization spectroscopy. Appl. Spectrosc. 1978, 32, 192–200. [Google Scholar] [CrossRef]
- Schellman, J.A.; Jensen, H.P. Optical spectroscopy of oriented molecules. Chem. Rev. 1987, 87, 1359–1399. [Google Scholar] [CrossRef]
- Schönhofer, A.; Kuball, H.-G.; Puebla, C. Optical activity of oriented molecules. IX. Phenomenological Mueller matrix description of thick samples and of optical elements. Chem. Phys. 1983, 76, 453–467. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Eigenvectors of polarization coherency matrices. J. Opt. Soc. Am. A 2020, 37, 1143–1154. [Google Scholar] [CrossRef]
- Van de Hulst, H. Light Scattering by Small Particles; Wiley: New York, USA, 1957. [Google Scholar]
- Mishchenko, M.I. Enhanced backscattering of polarized light from discrete random media: In exactly the backscattering direction. J. Opt. Soc. Am. A 1992, 9, 978–982. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Hovenier, J.W. Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett. 1995, 20, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Eigenvalues of the coherency matrix for exact backscattering. J. Opt. Soc. Am. A 2019, 36, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R. Differential and product Mueller matrix decompositions: A formal comparison. Opt. Lett. 2012, 37, 220–222. [Google Scholar] [CrossRef]
- Sridar, R.; Simon, R. Normal form for Mueller matrices in polarization optics. J. Mod. Opt. 1994, 41, 1903–1915. [Google Scholar] [CrossRef]
- Bolshakov, Y.; van der Mee, C.V.M.; Ran, A.C.M.; Reichstein, B.; Rodman, L. Polar decompositions in finite dimensional indefinite scalar product spaces: Special cases and applications. Oper. Theory Adv. Appl. 1997, 87, 61–94. [Google Scholar] [CrossRef] [Green Version]
- Gopala Rao, A.V.; Mallesh, K.S.; Sudha. On the algebraic characterization of a Mueller matrix in polarization optics, I. Identifying a Mueller matrix from its N matrix. J. Mod. Opt. 1998, 45, 955–987. [Google Scholar]
- Gopala Rao, A.V.; Mallesh, K.S.; Sudha. On the algebraic characterization of a Mueller matrix in polarization optics, II. Necessary and sufficient conditions for Jones-derived Mueller matrices. J. Mod. Opt. 1998, 45, 989–999. [Google Scholar]
- Ossikovski, R. Canonical forms of depolarizing Mueller matrices. J. Opt. Soc. Am. A 2010, 27, 123–130. [Google Scholar] [CrossRef]
- Ossikovski, R.; Vizet, J. Eigenvalue-based depolarization metric spaces for Mueller matrices. J. Opt. Soc. Am. A 2019, 36, 1173–1186. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Arteaga, O.; Canillas, A. Analytic inversion of the Mueller–Jones polarization matrices for homogeneous media. Opt. Lett. 2010, 35, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R. Parameterization of the deterministic Mueller matrix: Application to a uniform medium. J. Opt. Soc. Am. A 2017, 34, 602–608. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. A Table of Some Coherency Matrices, Coherency Matrix Factors, and Their Respective Mueller Matrices. Photonics 2022, 9, 394. https://doi.org/10.3390/photonics9060394
Sheppard CJR, Bendandi A, Le Gratiet A, Diaspro A. A Table of Some Coherency Matrices, Coherency Matrix Factors, and Their Respective Mueller Matrices. Photonics. 2022; 9(6):394. https://doi.org/10.3390/photonics9060394
Chicago/Turabian StyleSheppard, Colin J. R., Artemi Bendandi, Aymeric Le Gratiet, and Alberto Diaspro. 2022. "A Table of Some Coherency Matrices, Coherency Matrix Factors, and Their Respective Mueller Matrices" Photonics 9, no. 6: 394. https://doi.org/10.3390/photonics9060394
APA StyleSheppard, C. J. R., Bendandi, A., Le Gratiet, A., & Diaspro, A. (2022). A Table of Some Coherency Matrices, Coherency Matrix Factors, and Their Respective Mueller Matrices. Photonics, 9(6), 394. https://doi.org/10.3390/photonics9060394