All-Dielectric Structural Colors with Lithium Niobate Nanodisk Metasurface Resonators
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.R.; Hollowell, A.E.; Zhang, C.; Guo, L.J. Angle-Insensitive Structural Colours Based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit. Sci. Rep. 2013, 3, 1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukusic, P.; Sambles, J.R.; Lawrence, C.R. Colour Mixing in Wing Scales of a Butterfly. Nature 2000, 404, 457. [Google Scholar] [CrossRef]
- Zi, J.; Yu, X.; Li, Y.; Hu, X.; Xu, C.; Wang, X.; Liu, X.; Fu, R. Coloration Strategies in Peacock Feathers. Proc. Natl. Acad. Sci. USA 2003, 100, 12576–12578. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Ge, J.; Kim, J.; Choi, S.E.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S. Structural Colour Printing Using a Magnetically Tunable and Lithographically Fixable Photonic Crystal. Nat. Photon. 2009, 3, 534–540. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Zhang, Y.; Li, K.; Fang, X.; Zhang, X.; Liu, X. Compact Multilayer Film Structure for Angle Insensitive Color Filtering. Sci. Rep. 2015, 5, 9285. [Google Scholar] [CrossRef]
- Yang, W.; Xiao, S.; Song, Q.; Liu, Y.; Wu, Y.; Wang, S.; Yu, J.; Han, J.; Tsai, D.P. All-Dielectric Metasurface for High-Performance Structural Color. Nat. Commun. 2020, 11, 1864. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhu, X.; Chen, Y.; Shi, H.; Li, Z.; Zhang, S.; Liu, Q.; Li, Y.; Xiang, Q.; Duan, H. Fabrication of Fabry-Perot-Cavity-Based Monolithic Full-Color Filter Arrays Using a Template-Confined Micro-Reflow Process. J. Micromech. Microeng. 2019, 29, 025008. [Google Scholar] [CrossRef]
- Lin, Y.; Dai, J.; Zeng, Z.; Yang, B.R. Metasurface Color Filters Using Aluminum and Lithium Niobate Configurations. Nanoscale Res. Lett. 2020, 15, 77. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, X.; Matuschek, M.; Zhou, Y.; Neubrech, F.; Duan, H.; Liu, N. Dynamic Color Displays Using Stepwise Cavity Resonators. Nano Lett. 2017, 17, 5555–5560. [Google Scholar] [CrossRef] [Green Version]
- Lio, G.E.; Ferraro, A.; Giocondo, M.; Caputo, R.; De Luca, A. Color Gamut Behavior in Epsilon Near-Zero Nanocavities during Propagation of Gap Surface Plasmons. Adv. Opt. Mater. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre Optical Coatings Based on Strong Interference Effects in Highly Absorbing Media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef]
- James, T.D.; Mulvaney, P.; Roberts, A. The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. Nano Lett. 2016, 16, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Do, Y.S.; Park, J.H.; Hwang, B.Y.; Lee, S.M.; Ju, B.K.; Choi, K.C. Plasmonic Color Filter and Its Fabrication for Large-Area Applications. Adv. Opt. Mater. 2013, 1, 133–138. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Seo, M.; Lee, M. Generation of Reflection Colors from Metal-Insulator-Metal Cavity Structure Enabled by Thickness-Dependent Refractive Indices of Metal Thin Film. ACS Photon. 2019, 6, 2342–2349. [Google Scholar] [CrossRef]
- Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized Surface Plasmon Resonances in Aluminum Nanodisks. Nano Lett. 2008, 8, 1461–1471. [Google Scholar] [CrossRef]
- Li, G.; Zhang, S.; Zentgraf, T. Nonlinear Photonic Metasurfaces. Nat. Rev. Mater. 2017, 2, 17010. [Google Scholar] [CrossRef]
- Ye, W.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.W.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and Wavelength Multiplexed Nonlinear Metasurface Holography. Nat. Commun. 2016, 7, 11930. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, L.; Tang, Z.; Jin, W.; Qiu, C.W.; Lei, D.Y. 3D Metaphotonic Nanostructures with Intrinsic Chirality. Adv. Funct. Mater. 2018, 28, 1803147. [Google Scholar] [CrossRef]
- Proust, J.; Bedu, F.; Gallas, B.; Ozerov, I.; Bonod, N. All-Dielectric Colored Metasurfaces with Silicon Mie Resonators. ACS Nano 2016, 10, 7761–7767. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, Z.; Zhang, C.; Gao, Y.; Duan, Z.; Xiao, S.; Song, Q. All-Dielectric Full-Color Printing with TiO2 Metasurfaces. ACS Nano 2017, 11, 4445–4452. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated Photonics on Thin-Film Lithium Niobate. Adv. Opt. Photon. 2021, 13, 242. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Y. Integrated Lithium Niobate Photonics. Nanophotonics 2020, 9, 1287–1320. [Google Scholar] [CrossRef]
- Zhao, J.; Rüsing, M.; Javid, U.A.; Ling, J.; Li, M.; Lin, Q.; Mookherjea, S. Shallow-Etched Thin-Film Lithium Niobate Waveguides for Highly-Efficient Second-Harmonic Generation. Opt. Express 2020, 28, 19669. [Google Scholar] [CrossRef]
- Carletti, L.; Zilli, A.; Moia, F.; Toma, A.; Finazzi, M.; De Angelis, C.; Neshev, D.N.; Celebrano, M. Steering and Encoding the Polarization of the Second Harmonic in the Visible with a Monolithic LiNbO3 Metasurface. ACS Photon. 2021, 8, 731–737. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Xiang, J.; Chen, B.; Wei, Y.; Liu, W.; Xu, Y.; Lan, S.; Liu, J. Ultraviolet Second Harmonic Generation from Mie-Resonant Lithium Niobate Nanospheres. Nanophotonics 2021, 10, 4273–4278. [Google Scholar] [CrossRef]
- He, Y.; Yang, Q.F.; Ling, J.; Luo, R.; Liang, H.; Li, M.; Shen, B.; Wang, H.; Vahala, K.; Lin, Q. Self-Starting Bi-Chromatic LiNbO3 Soliton Microcomb. Optica 2019, 6, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ma, C.; Rüsing, M.; Mookherjea, S. High Quality Entangled Photon Pair Generation in Periodically Poled Thin-Film Lithium Niobate Waveguides. Phys. Rev. Lett. 2020, 124, 163603. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Xu, Y.; Fang, Z.; Wang, M.; Song, J.; Wang, N.; Qiao, L.; Fang, W.; Cheng, Y. Fabrication of High-Q Lithium Niobate Microresonators Using Femtosecond Laser Micromachining. Sci. Rep. 2015, 5, 8702. [Google Scholar] [CrossRef]
- Si, G.; Danner, A.J.; Teo, S.L.; Teo, E.J.; Teng, J.; Bettiol, A.A. Photonic Crystal Structures with Ultrahigh Aspect Ratio in Lithium Niobate Fabricated by Focused Ion Beam Milling. J. Vac. Sci. Technol. B 2011, 29, 021205. [Google Scholar] [CrossRef] [Green Version]
- Kip, D. Photorefractive Waveguides in Oxide Crystals: Fabrication, Properties, and Applications. Appl. Phys. B Lasers Opt. 1998, 67, 131–150. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Cheng, R.; Shams-Ansari, A.; Lončar, M. Monolithic Ultra-High-Q Lithium Niobate Microring Resonator. Optica 2017, 4, 1536–1537. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium Niobate on Insulator (LNOI) for Micro-Photonic Devices. Laser Photon. Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro-Optically Tunable Microring Resonators in Lithium Niobate. Nat. Photon. 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Gao, B.; Ren, M.; Wu, W.; Hu, H.; Cai, W.; Xu, J. Lithium Niobate Metasurfaces. Laser Photon. Rev. 2019, 13, 1800312. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Gao, S.; Li, Y.; Zhang, C.; Yue, W. Dielectric Metasurfaces Based on a Rectangular Lattice of A-Si:H Nanodisks for Color Pixels with High Saturation and Stability. Opt. Express 2019, 27, 35027. [Google Scholar] [CrossRef] [PubMed]
- Kivshar, Y.; Miroshnichenko, A. Meta-Optics with Mie Resonances. Opt. Photon. News 2017, 28, 24–31. [Google Scholar] [CrossRef]
- Shcherbakov, M.R.; Vabishchevich, P.P.; Shorokhov, A.S.; Chong, K.E.; Choi, D.Y.; Staude, I.; Miroshnichenko, A.E.; Neshev, D.N.; Fedyanin, A.A.; Kivshar, Y.S. Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. Nano Lett. 2015, 15, 6985–6990. [Google Scholar] [CrossRef] [PubMed]
- Verre, R.; Baranov, D.G.; Munkhbat, B.; Cuadra, J.; Käll, M.; Shegai, T. Transition Metal Dichalcogenide Nanodisks as High-Index Dielectric Mie Nanoresonators. Nat. Nanotechnol. 2019, 14, 679–683. [Google Scholar] [CrossRef] [Green Version]
- Aieta, F.; Kats, M.A.; Genevet, P.; Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 2015, 347, 1342–1345. [Google Scholar] [CrossRef]
- Todisco, F.; Malureanu, R.; Wolff, C.; Gonçalves, P.A.D.; Roberts, A.S.; Mortensen, N.A.; Tserkezis, C. Magnetic and Electric Mie-Exciton Polaritons in Silicon Nanodisks. Nanophotonics 2020, 9, 803–814. [Google Scholar] [CrossRef]
- Utyushev, A.D.; Zakomirnyi, V.I.; Rasskazov, I.L. Collective Lattice Resonances: Plasmonics and Beyond. Rev. Phys. 2021, 6, 100051. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, Q.; Ji, Z.; Zeng, P. All-Dielectric Structural Colors with Lithium Niobate Nanodisk Metasurface Resonators. Photonics 2022, 9, 402. https://doi.org/10.3390/photonics9060402
Zhou Y, Wang Q, Ji Z, Zeng P. All-Dielectric Structural Colors with Lithium Niobate Nanodisk Metasurface Resonators. Photonics. 2022; 9(6):402. https://doi.org/10.3390/photonics9060402
Chicago/Turabian StyleZhou, Yuting, Qingyu Wang, Zhiqiang Ji, and Pei Zeng. 2022. "All-Dielectric Structural Colors with Lithium Niobate Nanodisk Metasurface Resonators" Photonics 9, no. 6: 402. https://doi.org/10.3390/photonics9060402
APA StyleZhou, Y., Wang, Q., Ji, Z., & Zeng, P. (2022). All-Dielectric Structural Colors with Lithium Niobate Nanodisk Metasurface Resonators. Photonics, 9(6), 402. https://doi.org/10.3390/photonics9060402