Improving the Performance of Direct Bonded Five-Junction Solar Cells by Optimization of AlInP Window Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Epitaxy Process Optimization in AlGaInP Sub-Cell
3.1.1. Effect of Growth Temperature
3.1.2. Effect of Doping Concentration
3.1.3. Effect of Window Verified by 2.1 eV AlGaInP DHs
3.1.4. Fabrication of Improved Solar Cells
3.2. Structure Optimization in GaAs Sub-Cell
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Takamoto, T.; Araki, K.; Ekins-Daukes, N. Multi-junction III–V solar cells: Current status and future potential. Sol. Energy 2005, 79, 78–85. [Google Scholar] [CrossRef]
- Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 57). Prog. Photovolt. 2021, 29, 3–15. [Google Scholar] [CrossRef]
- Pakhanov, N.A.; Andreev, V.M.; Shvarts, M.Z.; Pchelyakov, O.P. State-of-the-art Architectures and Technologies of High-Efficiency Solar Cells Based on III–V Heterostructures for Space and Terrestrial Applications. Optoelectron. Instrum. Data Process. 2018, 54, 187–202. [Google Scholar] [CrossRef]
- Geisz, J.F.; Steiner, M.A.; Jain, N.; Schulte, K.L.; France, R.M.; McMahon, W.E.; Perl, E.E.; Friedman, D.J. Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell. IEEE J. Photovolt. 2018, 8, 626–632. [Google Scholar] [CrossRef]
- Chiu, P.T.; Law, D.C.; Singer, S.B.; Bhusari, D.; Zakaria, A.; Liu, X.Q.; Mesropian, S.; Karam, N.H. High performance 5J and 6J direct bonded (SBT) space solar cells. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–3. [Google Scholar]
- Chiu, P.; Law, D.; Woo, R.; Singer, S.; Bhusari, D.; Hong, W.; Zakaria, A.; Boisvert, J.; Mesropian, S.; King, R. Direct semiconductor bonded 5J cell for space and terrestrial applications. IEEE J. Photovolt. 2014, 4, 493–497. [Google Scholar] [CrossRef]
- France, R.M.; Dimroth, F.; Grassman, T.J.; King, R.R. Metamorphic epitaxy for multijunction solar cells. MRS Bull. 2016, 41, 202–209. [Google Scholar] [CrossRef]
- Guter, W.; Schöne, J.; Philipps, S.P.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A.W.; Dimroth, F. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 2009, 94, 223504. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Lu, H.; Zhang, W. >35% 5-junction space solar cells based on the direct bonding technique. J. Semicond. 2021, 42, 122701. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Zhang, J.; Lu, H.; Zhou, D.; Sun, L.; Chen, K. Study on 2.05 eV Al0.13GaInP sub-cell and its hetero-structure cells. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 479–481. [Google Scholar]
- Sun, Y.; Fan, S.; Faucher, J.; Hool, R.D.; Li, B.D.; Dhingra, P.; Lee, M.L. 2.0–2.2 eV AlGaInP solar cells grown by molecular beam epitaxy. Sol. Energy Mater. Sol. Cells 2021, 219, 110774. [Google Scholar] [CrossRef]
- Perl, E.E.; Simon, J.; Geisz, J.F.; Olavarria, W.; Young, M.; Duda, A.; Friedman, D.J.; Steiner, M.A. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy. IEEE J. Photovolt. 2016, 6, 770–776. [Google Scholar] [CrossRef]
- Steiner, M.A.; France, R.M.; Perl, E.E.; Friedman, D.J.; Simon, J.; Geisz, J.F. Reverse Heterojunction (Al)GaInP Solar Cells for Improved Efficiency at Concentration. IEEE J. Photovolt. 2020, 10, 487–494. [Google Scholar] [CrossRef]
- Hinojosa, M.; García, I.; Rey-Stolle, I.; Algora, C. Evidence of enhanced Zn-diffusion observed during the growth of Inverted Metamorphic Solar Cells. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 49–53. [Google Scholar]
- Steiner, M.A.; Geisz, J.F.; Reedy, R.C.; Kurtz, S. A direct comparison of inverted and non-inverted growths of GaInP solar cells. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; pp. 1–6. [Google Scholar]
- Li, X.; Zhang, W.; Lu, H.; Chen, K.; Zhou, D. Growth of tellurium doped ultra-broadband tunnel junction for the next generation 5J solar cell. J. Cryst. Growth 2014, 405, 16–18. [Google Scholar] [CrossRef]
- Dimroth, F.; Grave, M.; Beutel, P.; Fiedeler, U.; Karcher, C.; Tibbits, T.N.; Oliva, E.; Siefer, G.; Schachtner, M.; Wekkeli, A. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. 2014, 22, 277–282. [Google Scholar] [CrossRef]
- Zhang, M.; Ning, T.; Chen, J.; Sun, L.; Zhou, L. Improvement on the interface properties of p-GaAs/n-InP heterojunction for wafer bonded four-junction solar cells. J. Mater. Sci. Technol. 2019, 35, 330–333. [Google Scholar] [CrossRef]
- Cederberg, J.; Bieg, B.; Huang, J.-W.; Stockman, S.; Peanasky, M.; Kuech, T. Intrinsic and oxygen-related deep level defects in In0.5 (AlxGa1−x)0.5P grown by metal-organic vapor phase epitaxy. J. Cryst. Growth 1998, 195, 63–68. [Google Scholar] [CrossRef]
- Tukiainen, A.; Dekker, J.; Leinonen, T.; Pessa, M. Characterization of deep levels in rapid-thermal-annealed AlGaInP. Mater. Sci. Eng. B 2002, 91, 389–392. [Google Scholar] [CrossRef]
- Kondo, M.; Okada, N.; Domen, K.; Sugiura, K.; Anayama, C.; Tanahashi, T. Origin of nonradiative recombination centers in AlGaInP grown by metalorganic vapor phase epitaxy. J. Electron. Mater. 1994, 23, 355–358. [Google Scholar] [CrossRef]
- Lee, K.-J.; Chen, H.; Chen, J. Photoluminescence of the Se and Si DX centers in (AlxGa1−x)0.5In0.5P (x < 0.5) grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 1997, 82, 1350–1354. [Google Scholar] [CrossRef]
- Nojima, S.; Tanaka, H.; Asahi, H. Deep electron trapping center in Si-doped InGaAlP grown by molecular-beam epitaxy. J. Appl. Phys. 1986, 59, 3489–3494. [Google Scholar] [CrossRef]
- Huang, Z.; Wie, C.; Varriano, J.; Koch, M.; Wicks, G. Phosphorus-vacancy-related deep levels in GaInP layers. J. Appl. Phys. 1995, 77, 1587–1590. [Google Scholar] [CrossRef]
- Kosa, A.; Stuchlikova, L.; Harmatha, L.; Mikolasek, M.; Kovac, J.; Sciana, B.; Dawidowski, W.; Radziewicz, D.; Tlaczala, M. Defect distribution in InGaAsN/GaAs multilayer solar cells. Sol. Energy 2016, 132, 587–590. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Wu, Y.; Lu, F. Direct observation of defects in triple-junction solar cell by optical deep-level transient spectroscopy. J. Phys. D Appl. Phys. 2009, 42, 145401. [Google Scholar] [CrossRef]
- Leon, C.; Le Gall, S.; Gueunier-Farret, M.-E.; Kleider, J.-P. How to perform admittance spectroscopy and DLTS in multijunction solar cells. Sol. Energy Mater. Sol. Cells 2022, 240, 111699. [Google Scholar] [CrossRef]
- Dobaczewski, L.; Kaczor, P.; Żytkiewicz, Z.R.; Missous, M.; Saleemi, F.; Dawson, P.; Peaker, A.R. Hole capture at the DX(Si) and DX(Te) defects in AlxGa1−xAs. J. Appl. Phys. 1992, 72, 3198–3200. [Google Scholar] [CrossRef]
- Stockman, S.; Huang, J.-W.; Osentowski, T.; Chui, H.; Peanasky, M.; Maranowski, S.; Grillot, P.; Moll, A.; Chen, C.; Kuo, C. Oxygen incorporation in AllnP, and its effect on P-type doping with magnesium. J. Electron. Mater. 1999, 28, 916–925. [Google Scholar] [CrossRef]
- Hovel, H.J. Semiconductors and Semimetals. Volume 11. Solar Cells; Academic Press, Inc.: New York, NY, USA, 1975. [Google Scholar]
- Yu, Q.; Raiwu, P.; Cuiyun, L. Effect of VIII ratio on the electrical and optical properties of Si-doped AlGaInP grown by metalorganic chemical vapor deposition. J. Cryst. Growth 1995, 148, 13–16. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; World Scientific Publishing Company: Singapore, 2003. [Google Scholar]
- García, I.; Ochoa, M.; Lombardero, I.; Cifuentes, L.; Hinojosa, M.; Caño, P.; Rey-Stolle, I.; Algora, C.; Johnson, A.; Davies, I.; et al. Degradation of subcells and tunnel junctions during growth of GaInP/Ga(In)As/GaNAsSb/Ge 4-junction solar cells. Prog. Photovolt. 2017, 25, 887–895. [Google Scholar] [CrossRef] [Green Version]
- Rey-Stolle, I.; García, I.; Barrigón, E.; Olea, J.; Pastor, D.; Ochoa, M.; Barrutia, L.; Algora, C.; Walukiewicz, W. On the thermal degradation of tunnel diodes in multijunction solar cells. AIP Conf. Proc. 2017, 1881, 040005. [Google Scholar] [CrossRef] [Green Version]
- Dawidowski, W.; Ściana, B.; Zborowska-Lindert, I.; Mikolášek, M.; Kováč, J.; Tłaczała, M. Tunnel junction limited performance of InGaAsN/GaAs tandem solar cell. Sol. Energy 2021, 214, 632–641. [Google Scholar] [CrossRef]
- Lu, H.; Li, X.; Zhang, W.; Li, G.; Hu, S.; Dai, N. MOVPE grown 1.0 eV InGaAsP solar cells with bandgap-voltage offset near to ideal radiative recombination limit. Sol. Energy Mater. Sol. Cells 2019, 196, 65–69. [Google Scholar] [CrossRef]
- Gudovskikh, A.; Zelentsov, K.; Kalyuzhnyy, N.; Lantratov, V.; Mintairov, S. Anisotype GaAs based heterojunctions for III-V multijunction solar cells. In Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6–10 September 2010; pp. 472–476. [Google Scholar]
- Hwang, S.-T.; Kim, S.; Cheun, H.; Lee, H.; Lee, B.; Hwang, T.; Lee, S.; Yoon, W.; Lee, H.-M.; Park, B. Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 2016, 155, 264–272. [Google Scholar] [CrossRef]
- Adachi, S. GaAs, AlAs, and Al × Ga1 − xAs: Material parameters for use in research and device applications. J. Appl. Phys. 1985, 58, R1–R29. [Google Scholar] [CrossRef]
- Bour, D.; Shealy, J.; Wicks, G.; Schaff, W. Optical properties of Alx In1−xP grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 1987, 50, 615–617. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef] [Green Version]
- Ragay, F.; Ruigrok, E.; Wolter, J. GaAs-AlGaAs heterojunction solar cells with increased open-circuit voltage. In Proceedings of the 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, HI, USA, 5–9 December 1994; pp. 1934–1937. [Google Scholar]
- Jensen, N.; Rau, U.; Hausner, R.; Uppal, S.; Oberbeck, L.; Bergmann, R.; Werner, J. Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells. J. Appl. Phys. 2000, 87, 2639–2645. [Google Scholar] [CrossRef]
No. | Temp. (°C) | Jsc (mA) | Voc (mV) | Ff |
---|---|---|---|---|
S-018 | 710 | 11.79 | 2705 | 0.850 |
S-043 | 690 | 11.25 | 2656 | 0.732 |
S-036 | 700 | 11.18 | 2607 | 0.813 |
S-033 | 710 | 10.45 | 2604 | 0.791 |
S-037 | 720 | 9.36 | 2575 | 0.809 |
No. | Temp. (°C) | Doping Level (cm−3) | Jsc (mA) | Voc (mV) | Ff | |
---|---|---|---|---|---|---|
Emitter | Window | |||||
S-033 | 710 | 3E18 | 7E18 | 10.45 | 2604 | 0.791 |
S-039 | 710 | 3E17 | 7E18 | 10.38 | 2540 | 0.758 |
S-040 | 710 | 3E17 | 7E17 | 11.07 | 2545 | 0.671 |
S-043 | 690 | 3E18 | 6E18 | 11.25 | 2656 | 0.732 |
No. | Temp. (°C) | Jsc (mA) | Voc (mV) | Ff | Eff. (%) | |
---|---|---|---|---|---|---|
Win/Emitter | ||||||
S-033 | inverted | 710/710 | 10.45 | 2604 | 0.789 | 15.87 |
S-051 | inverted | 690/710 | 11.47 | 2664 | 0.827 | 18.68 |
S-018 | upright | 710/710 | 11.79 | 2705 | 0.850 | 20.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Lu, H.; Li, X.; Zhang, W. Improving the Performance of Direct Bonded Five-Junction Solar Cells by Optimization of AlInP Window Layer. Photonics 2022, 9, 404. https://doi.org/10.3390/photonics9060404
Li G, Lu H, Li X, Zhang W. Improving the Performance of Direct Bonded Five-Junction Solar Cells by Optimization of AlInP Window Layer. Photonics. 2022; 9(6):404. https://doi.org/10.3390/photonics9060404
Chicago/Turabian StyleLi, Ge, Hongbo Lu, Xinyi Li, and Wei Zhang. 2022. "Improving the Performance of Direct Bonded Five-Junction Solar Cells by Optimization of AlInP Window Layer" Photonics 9, no. 6: 404. https://doi.org/10.3390/photonics9060404
APA StyleLi, G., Lu, H., Li, X., & Zhang, W. (2022). Improving the Performance of Direct Bonded Five-Junction Solar Cells by Optimization of AlInP Window Layer. Photonics, 9(6), 404. https://doi.org/10.3390/photonics9060404