Quantitative Characterization of Age-Related Changes in Peripheral Vessels of a Human Palm Using Raster-Scan Optoacoustic Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vivo Experiments
2.2. Raster-Scan Optoacoustic Angiography System
2.3. Quantitative Algorithm for Assessing Vascular Changes
2.4. Quantitative Algorithm for Assessing Vascular Changes
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentov, I.; Reed, M.J. The effect of aging on the cutaneous microvasculature. Microvasc. Res. 2015, 100, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Varaki, E.S.; Gargiulo, G.D.; Penkala, S.; Breen, P.P. Peripheral vascular disease assessment in the lower limb: A review of current and emerging non-invasive diagnostic methods. Biomed. Eng. Online 2018, 17, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, S.M.; Vale, P.R. Peripheral arterial disease. Heart Lung Circ. 2018, 27, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Lee, K.E.; Danforth, L.; Tsai, M.Y.; Gangnon, R.E.; Meuer, S.E.; Wong, T.Y.; Cheung, C.Y.; Klein, B.E. The relationship of retinal vessel geometric characteristics to the incidence and progression of diabetic retinopathy. Ophthalmology 2018, 125, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Alexandre-Heymann, L.; Barral, M.; Dohan, A.; Larger, E. Patients with type 2 diabetes present with multiple anomalies of the pancreatic arterial tree on abdominal computed tomography: Comparison between patients with type 2 diabetes and a matched control group. Cardiovasc. Diabetol. 2020, 19, 122. [Google Scholar] [CrossRef]
- Inampudi, C.; Akintoye, E.; Ando, T.; Briasoulis, A. Angiogenesis in peripheral arterial disease. Curr. Opin. Pharmacol. 2018, 39, 60–67. [Google Scholar] [CrossRef]
- Tibirica, E.; Souza, E.G.; De Lorenzo, A.; Oliveira, G.M. Reduced systemic microvascular density and reactivity in individuals with early onset coronary artery disease. Microvasc. Res. 2015, 97, 105–108. [Google Scholar] [CrossRef]
- Peralta, G.A.; Gardoqui, J.A.; Macías, F.L.; Ceja, V.N.; Cisneros, S.M.; Macías, C.M. Clinical and capillaroscopic evaluation in the treatment of chronic venous insufficiency with Ruscus aculeatus, hesperidin methylchalcone and ascorbic acid in venous insufficiency treatment of ambulatory patients. Int. Angiol. 2007, 26, 378. [Google Scholar]
- Garner, R.; Kumari, R.; Lanyon, P.; Doherty, M.; Zhang, W. Prevalence, risk factors and associations of primary Raynaud’s phenomenon: Systematic review and meta-analysis of observational studies. BMJ open 2015, 5, e006389. [Google Scholar] [CrossRef] [Green Version]
- Herrick, A.L. The pathogenesis, diagnosis and treatment of Raynaud phenomenon. Nat. Rev. Rheumatol. 2012, 8, 469. [Google Scholar] [CrossRef]
- Maverakis, E.; Patel, F.; Kronenberg, D.G.; Chung, L.; Fiorentino, D.; Allanore, Y.; Guiducci, S.; Hesselstrand, R.; Hummers, L.K.; Duong, C. International consensus criteria for the diagnosis of Raynaud’s phenomenon. J. Autoimmun. 2014, 48, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Blais, C.; Rochette, L.; Ouellet, S.; Huynh, T. Complex Evolution of Epidemiology of Vascular Diseases, Including Increased Disease Burden: From 2000 to 2015. Can. J. Cardiol. 2020, 36, 740–746. [Google Scholar] [CrossRef]
- Youn, Y.J.; Lee, J. Chronic venous insufficiency and varicose veins of the lower extremities. Korean J. Intern. Med. 2019, 34, 269. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, C.; Guan, S.; Liu, H.; Wu, X.; Liu, C.; Li, H.; Hou, C.; Fang, X. Prevalence characters of peripheral artery disease and associated factors among Beijing residents aged equal and above 35 years old. Zhonghua Xin Xue Guan Bing Za Zhi 2019, 47, 1000–1004. [Google Scholar] [CrossRef]
- Olinic, D.-M.; Spinu, M.; Olinic, M.; Homorodean, C.; Tataru, D.-A.; Liew, A.; Schernthaner, G.-H.; Stanek, A.; Fowkes, G.; Catalano, M. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int. Angiol. A J. Int. Union Angiol. 2018, 37, 327–334. [Google Scholar] [CrossRef]
- Gunin, A.; Petrov, V.; Vasilieva, O.; Golubtsova, N. Age-related changes of blood vessels in the human dermis. Adv. Gerontol. 2015, 5, 65–71. [Google Scholar] [CrossRef]
- Kajiya, K.; Kim, Y.K.; Kinemura, Y.; Kishimoto, J.; Chung, J.H. Structural alterations of the cutaneous vasculature in aged and in photoaged human skin in vivo. J. Dermatol. Sci. 2011, 61, 206–208. [Google Scholar] [CrossRef]
- Quatresooz, P.; Piérard, G.E. Immunohistochemical clues at aging of the skin microvascular unit. J. Cutan. Pathol. 2009, 36, 39–43. [Google Scholar] [CrossRef]
- Li, L.; Mac-Mary, S.; Sainthillier, J.-M.; Nouveau, S.; De Lacharriere, O.; Humbert, P. Age-related changes of the cutaneous microcirculation in vivo. Gerontology 2006, 52, 142–153. [Google Scholar] [CrossRef]
- Kelly, R.I.; Pearse, R.; Bull, R.H.; Leveque, J.-L.; De Rigal, J.; Mortimer, P.S. The effects of aging on the cutaneous microvasculature. J. Am. Acad. Dermatol. 1995, 33, 749–756. [Google Scholar] [CrossRef]
- Hara, Y.; Yamashita, T.; Kikuchi, K.; Kubo, Y.; Katagiri, C.; Kajiya, K.; Saeki, S. Visualization of age-related vascular alterations in facial skin using optical coherence tomography-based angiography. J. Dermatol. Sci. 2018, 90, 96–98. [Google Scholar] [CrossRef] [Green Version]
- Lan, B.; Liu, W.; Wang, Y.-C.; Shi, J.; Li, Y.; Xu, S.; Sheng, H.; Zhou, Q.; Zou, J.; Hoffmann, U.; et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics. Biomed. Opt. Express 2018, 9, 4689–4701. [Google Scholar] [CrossRef]
- Li, W.; Hofmann, U.; Rebling, J.; Zhou, Q.; Chen, Z.; Ozbek, A.; Gong, Y.; Subochev, P.; Razansky, D.; Dean-Ben, X. Broadband Model-Based Optoacoustic Mesoscopy Enables Deep-Tissue Imaging beyond the Acoustic Diffraction Limit. Laser Photonics Rev. 2022, 16, 210038. [Google Scholar] [CrossRef]
- Corliss, B.A.; Mathews, C.; Doty, R.; Rohde, G.; Peirce, S.M. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019, 26, e12520. [Google Scholar] [CrossRef] [Green Version]
- Perekatova, V.; Kirillin, M.; Subochev, P.; Kurnikov, A.; Khilov, A.; Orlova, A.; Yuzhakova, D.; Turchin, I. Quantification of microvasculature parameters based on optoacoustic angiography data. Laser Phys. Lett. 2021, 18, 035602. [Google Scholar] [CrossRef]
- Turchin, I.; Bano, S.; Kirillin, M.; Orlova, A.; Perekatova, V.; Plekhanov, V.; Sergeeva, E.; Kurakina, D.; Khilov, A.; Kurnikov, A.; et al. Combined Fluorescence and Optoacoustic Imaging for Monitoring Treatments against CT26 Tumors with Photoactivatable Liposomes. Cancers 2021, 14, 197. [Google Scholar] [CrossRef]
- Kurnikov, A.A.; Pavlova, K.G.; Orlova, A.G.; Khilov, A.V.; Perekatova, V.V.; Kovalchuk, A.V.; Subochev, P.V. Broadband (100 kHz–100 MHz) ultrasound PVDF detectors for raster-scan optoacoustic angiography with acoustic resolution. Quantum Electron. 2021, 51, 383. [Google Scholar] [CrossRef]
- Subochev, P. Cost-effective imaging of optoacoustic pressure, ultrasonic scattering, and optical diffuse reflectance with improved resolution and speed. Opt. Lett. 2016, 41, 1006–1009. [Google Scholar] [CrossRef]
- Subochev, P.; Spadin, F.; Perekatova, V.; Khilov, A.; Kovalchuk, A.; Pavlova, K.; Kurnikov, A.; Frenz, M.; Jaeger, M. Toward Real-Time Giga-Voxel Optoacoustic/Photoacoustic Microscopy: GPU-Accelerated Fourier Reconstruction with Quasi-3D Implementation. Photonics 2022, 9, 15. [Google Scholar] [CrossRef]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar] [CrossRef] [Green Version]
- Treeby, B.E.; Cox, B.T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef]
- Kollmannsberger, P.; Kerschnitzki, M.; Repp, F.; Wagermaier, W.; Weinkamer, R.; Fratzl, P. The small world of osteocytes: Connectomics of the lacuno-canalicular network in bone. New J. Phys. 2017, 19, 073019. [Google Scholar] [CrossRef]
- Cracowski, J.L.; Roustit, M. Human skin microcirculation. Compr. Physiol. 2011, 10, 1105–1154. [Google Scholar] [CrossRef]
- Gunin, A.G.; Petrov, V.V.; Golubtzova, N.N.; Vasilieva, O.V.; Kornilova, N.K. Age-related changes in angiogenesis in human dermis. Exp. Gerontol. 2014, 55, 143–151. [Google Scholar] [CrossRef]
- Ryan, T. The ageing of the blood supply and the lymphatic drainage of the skin. Micron 2004, 35, 161–171. [Google Scholar] [CrossRef]
- Waller, J.M.; Maibach, H.I. Age and skin structure and function, a quantitative approach (I): Blood flow, pH, thickness, and ultrasound echogenicity. Ski. Res. Technol. 2005, 11, 221–235. [Google Scholar] [CrossRef]
- Li, X.; Dinish, U.S.; Aguirre, J.; Bi, R.; Dev, K.; Attia, A.B.E.; Nitkunanantharajah, S.; Lim, Q.H.; Schwarz, M.; Yew, Y.W.; et al. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. J. Biophotonics 2019, 12, e201800442. [Google Scholar] [CrossRef]
Parameter | p12 | p13 | p23 |
---|---|---|---|
Image intensity | >0.05 | 0.002 | >0.05 |
Vessel intensity | >0.05 | 0.000 | 0.012 |
Total vessel length | >0.05 | 0.026 | >0.05 |
Number of branches | >0.05 | 0.045 | >0.05 |
Ratio of blood content | 0.041 | 0.004 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perekatova, V.; Kirillin, M.; Nemirova, S.; Orlova, A.; Kurnikov, A.; Khilov, A.; Pavlova, K.; Kazakov, V.; Vildanov, V.; Turchin, I.; et al. Quantitative Characterization of Age-Related Changes in Peripheral Vessels of a Human Palm Using Raster-Scan Optoacoustic Angiography. Photonics 2022, 9, 482. https://doi.org/10.3390/photonics9070482
Perekatova V, Kirillin M, Nemirova S, Orlova A, Kurnikov A, Khilov A, Pavlova K, Kazakov V, Vildanov V, Turchin I, et al. Quantitative Characterization of Age-Related Changes in Peripheral Vessels of a Human Palm Using Raster-Scan Optoacoustic Angiography. Photonics. 2022; 9(7):482. https://doi.org/10.3390/photonics9070482
Chicago/Turabian StylePerekatova, Valeriya, Mikhail Kirillin, Svetlana Nemirova, Anna Orlova, Alexey Kurnikov, Aleksandr Khilov, Ksenia Pavlova, Viacheslav Kazakov, Vadim Vildanov, Ilya Turchin, and et al. 2022. "Quantitative Characterization of Age-Related Changes in Peripheral Vessels of a Human Palm Using Raster-Scan Optoacoustic Angiography" Photonics 9, no. 7: 482. https://doi.org/10.3390/photonics9070482
APA StylePerekatova, V., Kirillin, M., Nemirova, S., Orlova, A., Kurnikov, A., Khilov, A., Pavlova, K., Kazakov, V., Vildanov, V., Turchin, I., & Subochev, P. (2022). Quantitative Characterization of Age-Related Changes in Peripheral Vessels of a Human Palm Using Raster-Scan Optoacoustic Angiography. Photonics, 9(7), 482. https://doi.org/10.3390/photonics9070482