Centimeter-Scale Curing Depths in Laser-Assisted 3D Printing of Photopolymers Enabled by Er3+ Upconversion and Green Light-Absorbing Photosensitizer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weller, C.; Kleer, R.; Piller, F.T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Park, S.-H.; Yang, D.-Y.; Lee, K.-S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 2009, 3, 1–11. [Google Scholar] [CrossRef]
- Malval, J.-P.; Jin, M.; Morlet-Savary, F.; Chaumeil, H.; Defoin, A.; Soppera, O.; Scheul, T.; Bouriau, M.; Baldeck, P.L. Enhancement of the Two-Photon Initiating Efficiency of a Thioxanthone Derivative through a Chevron-Shaped Architecture. Chem. Mater. 2011, 23, 3411–3420. [Google Scholar] [CrossRef]
- Li, Z.; Pucher, N.; Cicha, K.; Torgersen, J.; Ligon, S.C.; Ajami, A.; Husinsky, W.; Rosspeintner, A.; Vauthey, E.; Naumov, S.; et al. A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization. Macromolecules 2013, 46, 352–361. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chen, H.; Li, Z.; Shi, F.; Liu, X. Extremely deep photopolymerization using upconversion particles as internal lamps. Polym. Chem. 2016, 7, 2457–2463. [Google Scholar] [CrossRef]
- Méndez-Ramos, J.; Ruiz-Morales, J.C.; Acosta-Mora, P.; Khaidukov, N.M. Infrared-light induced curing of photosensitive resins through photon up-conversion for novel cost-effective luminescent 3D-printing technology. J. Mater. Chem. C 2016, 4, 801–806. [Google Scholar] [CrossRef]
- Rocheva, V.V.; Koroleva, A.V.; Savelyev, A.G.; Khaydukov, K.V.; Generalova, A.N.; Nechaev, A.V.; Guller, A.E.; Semchishen, V.A.; Chichkov, B.N.; Khaydukov, E.V. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 2018, 8, 3663. [Google Scholar] [CrossRef] [Green Version]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Alyatkin, S.; Asharchuk, I.; Khaydukov, K.; Nechaev, A.; Lebedev, O.; Vainer, Y.; Semchishen, V.; Khaydukov, E. The influence of energy migration on luminescence kinetics parameters in upconversion nanoparticles. Nanotechnology 2016, 28, 35401. [Google Scholar] [CrossRef]
- Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Express 2008, 16, 11907–11914. [Google Scholar] [CrossRef] [PubMed]
- Carve, M.; Wlodkowic, D. 3D-Printed Chips: Compatibility of Additive Manufacturing Photopolymeric Substrata with Biological Applications. Micromachines 2018, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDougall, S.K.W.; Ivaturi, A.; Marques-Hueso, J.; Krämer, K.W.; Richards, B.S. Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices. Opt. Express 2012, 20, A879–A887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.M.S.; Gakamsky, A.; Marques-Hueso, J. The upconversion quantum yield (UCQY): A review to standardize the measurement methodology, improve comparability, and define efficiency standards. Sci. Technol. Adv. Mater. 2021, 22, 810–848. [Google Scholar] [CrossRef]
- Jones, C.M.S.; Biner, D.; Misopoulos, S.; Krämer, K.W.; Marques-Hueso, J. Optimized photoluminescence quantum yield in upconversion composites considering the scattering, inner-filter effects, thickness, self-absorption, and temperature. Sci. Rep. 2021, 11, 13910. [Google Scholar] [CrossRef]
- Ding, M.; Chen, D.; Yin, S.; Ji, Z.; Zhong, J.; Ni, Y.; Lu, C.; Xu, Z. Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage. Sci. Rep. 2015, 5, 12745. [Google Scholar] [CrossRef] [Green Version]
- Bednarkiewicz, A.; Wawrzynczyk, D.; Gagor, A.; Kepinski, L.; Kurnatowska, M.; Krajczyk, L.; Nyk, M.; Samoc, M.; Strek, W. Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing. Nanotechnology 2012, 23, 145705. [Google Scholar] [CrossRef]
- Zhakeyev, A.; Marques-Hueso, J. Nonlinear Upconversion Effect for Enhancement of Curing Depths in Laser-Assisted 3D Printing of Photopolymers. In Proceedings of the 5th International Conference on Optics, Photonics and Lasers (OPAL’ 22), Tenerife (Canary Islands), Spain, 18–20 May 2022; Yurish, S., Ed.; IFSA Publishing: Barcelona, Spain, 2022; pp. 85–86. [Google Scholar]
- Kaastrup, K.; Sikes, H.D. Using photo-initiated polymerization reactions to detect molecular recognition. Chem. Soc. Rev. 2016, 45, 532–545. [Google Scholar] [CrossRef]
- Noshadi, I.; Hong, S.; Sullivan, K.E.; Shirzaei Sani, E.; Portillo-Lara, R.; Tamayol, A.; Shin, S.R.; Gao, A.E.; Stoppel, W.L.; Black III, L.D.; et al. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater. Sci. 2017, 5, 2093–2105. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Hashinger, D.T.; Fairhurst, C.W. Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent. Mater. 1990, 6, 241–249. [Google Scholar] [CrossRef]
- Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles—measurements and simulations. Nanoscale 2017, 9, 10051–10058. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.E.; Jiménez, C.; Hudry, D.; Gao, G.; Busko, D.; Biner, D.; Turshatov, A.; Krämer, K.; Richards, B.S.; Howard, I.A. Critical Power Density: A Metric To Compare the Excitation Power Density Dependence of Photon Upconversion in Different Inorganic Host Materials. J. Phys. Chem. A 2019, 123, 6799–6811. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.S.; Panov, N.; Skripka, A.; Gibbons, J.; Hesse, F.; Bos, J.-W.G.; Wang, X.; Vetrone, F.; Chen, G.; Hemmer, E.; et al. Effect of light scattering on upconversion photoluminescence quantum yield in microscale-to-nanoscale materials. Opt. Express 2020, 28, 22803–22818. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xiao, P. 3D printing of photopolymers. Polym. Chem. 2018, 9, 1530–1540. [Google Scholar] [CrossRef]
- Moszner, N.; Zeuner, F.; Lamparth, I.; Fischer, U.K. Benzoylgermanium Derivatives as Novel Visible-Light Photoinitiators for Dental Composites. Macromol. Mater. Eng. 2009, 294, 877–886. [Google Scholar] [CrossRef]
- Ganster, B.; Fischer, U.K.; Moszner, N.; Liska, R. New Photocleavable Structures, 4. Macromol. Rapid Commun. 2008, 29, 57–62. [Google Scholar] [CrossRef]
- Zhakeyev, A.; Jones, M.C.; Thomson, C.G.; Tobin, J.M.; Wang, H.; Vilela, F.; Xuan, J. Additive manufacturing of intricate and inherently photocatalytic flow reactor components. Addit. Manuf. 2021, 38, 101828. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhakeyev, A.; Marques-Hueso, J. Centimeter-Scale Curing Depths in Laser-Assisted 3D Printing of Photopolymers Enabled by Er3+ Upconversion and Green Light-Absorbing Photosensitizer. Photonics 2022, 9, 498. https://doi.org/10.3390/photonics9070498
Zhakeyev A, Marques-Hueso J. Centimeter-Scale Curing Depths in Laser-Assisted 3D Printing of Photopolymers Enabled by Er3+ Upconversion and Green Light-Absorbing Photosensitizer. Photonics. 2022; 9(7):498. https://doi.org/10.3390/photonics9070498
Chicago/Turabian StyleZhakeyev, Adilet, and Jose Marques-Hueso. 2022. "Centimeter-Scale Curing Depths in Laser-Assisted 3D Printing of Photopolymers Enabled by Er3+ Upconversion and Green Light-Absorbing Photosensitizer" Photonics 9, no. 7: 498. https://doi.org/10.3390/photonics9070498
APA StyleZhakeyev, A., & Marques-Hueso, J. (2022). Centimeter-Scale Curing Depths in Laser-Assisted 3D Printing of Photopolymers Enabled by Er3+ Upconversion and Green Light-Absorbing Photosensitizer. Photonics, 9(7), 498. https://doi.org/10.3390/photonics9070498