Molybdenum Oxide Functional Passivation of Aluminum Dimers for Enhancing Optical-Field and Environmental Stability
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of Al Bare Dimers
2.2. Oxide Deposition by ALD
2.3. Optical and Scanning Electron Microscopy Characterization
2.4. MoOx Density Measurements
2.5. Finite-Difference Time-Domain (FDTD)-Based Numerical Simulation
3. Results and Discussion
3.1. Molybdenum Oxide Functional Passivation of Al Dimers for Enhancing Optical Field
3.2. Molybdenum Oxide Functional Passivation of Al Dimers for Improving Environmental Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simeone, D.; Tasco, V.; Esposito, M.; Manoccio, M.; Lorenzo, D.; Scuderi, M.; Luca, A.D.; Cabrini, S.; Passaseo, A.; Cuscunà, M. Near-Field Enhancement in Oxidized Close Gap Aluminum Dimers. Nanotechnology 2021, 32, 025305. [Google Scholar] [CrossRef] [PubMed]
- Simeone, D.; Esposito, M.; Scuderi, M.; Calafiore, G.; Palermo, G.; De Luca, A.; Todisco, F.; Sanvitto, D.; Nicotra, G.; Cabrini, S.; et al. Tailoring Electromagnetic Hot Spots toward Visible Frequencies in Ultra-Narrow Gap Al/Al2O3 Bowtie Nanoantennas. ACS Photonics 2018, 5, 3399–3407. [Google Scholar] [CrossRef]
- Gerislioglu, B.; Dong, L.; Ahmadivand, A.; Hu, H.; Nordlander, P.; Halas, N.J. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal. Nano Lett. 2020, 20, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, C.; Zhao, H.; Sun, F.; Dong, H.; Feng, K.; Wang, P.; He, G.; Li, G. Rational Approach to Plasmonic Dimers with Controlled Gap Distance, Symmetry, and Capability of Precisely Hosting Guest Molecules in Hotspot Regions. J. Am. Chem. Soc. 2021, 143, 8631–8638. [Google Scholar] [CrossRef]
- Badilescu, S.; Raju, D.; Bathini, S.; Packirisamy, M. Gold Nano-Island Platforms for Localized Surface Plasmon Resonance Sensing: A Short Review. Molecules 2020, 25, 4661. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Wang, L.-L.; Ringe, E. Small Morphology Variations Effects on Plasmonic Nanoparticle Dimer Hotspots. J. Mater. Chem. C 2018, 6, 9607–9614. [Google Scholar] [CrossRef]
- Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Länk, N.O.; Dmitriev, A.; Vavassori, P.; Shvets, I.V.; Käll, M. Polarization Conversion-Based Molecular Sensing Using Anisotropic Plasmonic Metasurfaces. Nanoscale 2016, 8, 10576–10581. [Google Scholar] [CrossRef]
- Shen, Z.; Su, L. Plasmonic Trapping and Tuning of a Gold Nanoparticle Dimer. Opt. Express OE 2016, 24, 4801–4811. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with Plasmonic Nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Fusco, Z.; Bo, R.; Wang, Y.; Motta, N.; Chen, H.; Tricoli, A. Self-Assembly of Au Nano-Islands with Tuneable Organized Disorder for Highly Sensitive SERS. J. Mater. Chem. C 2019, 7, 6308–6316. [Google Scholar] [CrossRef]
- Ray, N.J.; Yoo, J.-H.; Baxamusa, S.; Nguyen, H.T.; Elhadj, S.; Feigenbaum, E. Tuning Gold Nanoparticle Size with Fixed Interparticle Spacing in Large-Scale Arrays: Implications for Plasmonics and Nanoparticle Etching Masks. ACS Appl. Nano Mater. 2021, 4, 2733–2742. [Google Scholar] [CrossRef]
- Li, W.; Camargo, P.H.C.; Lu, X.; Xia, Y. Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering. Nano Lett. 2009, 9, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czelej, K.; Colmenares, J.C.; Jabłczyńska, K.; Ćwieka, K.; Werner, Ł.; Gradoń, L. Sustainable Hydrogen Production by Plasmonic Thermophotocatalysis. Catal. Today 2021, 380, 156–186. [Google Scholar] [CrossRef]
- Todisco, F.; Esposito, M.; Panaro, S.; De Giorgi, M.; Dominici, L.; Ballarini, D.; Fernández-Domínguez, A.I.; Tasco, V.; Cuscunà, M.; Passaseo, A.; et al. Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States. ACS Nano 2016, 10, 11360–11368. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhou, Q.; Hou, M.; Ma, L.; Zhang, Z. Nanogap Effects on Near- and Far-Field Plasmonic Behaviors of Metallic Nanoparticle Dimers. Phys. Chem. Chem. Phys. 2015, 17, 29293–29298. [Google Scholar] [CrossRef]
- Deng, L.; Zhai, Y.; Chen, Y.; Wang, N.; Huang, Y. Enhancing the Plasmonic Fields by a High Refractive Index Dielectric Coating for Surface Enhanced Spectroscopies. J. Phys. D Appl. Phys. 2019, 52, 43LT01. [Google Scholar] [CrossRef]
- Deng, L.; Zhai, Y.; Chen, Y.; Wang, N.; Huang, Y. Enhancing Local Electric Fields at Plasmonic Nanogaps by Optimal Dielectric Coatings. J. Phys. D Appl. Phys. 2020, 53, 155103. [Google Scholar] [CrossRef]
- Zhai, Y.; Deng, L.; Chen, Y.; Wang, N.; Huang, Y. Reducing the Loss of Electric Field Enhancement for Plasmonic Core–Shell Nanoparticle Dimers by High Refractive Index Dielectric Coating. J. Phys. Condens. Matter 2019, 32, 105001. [Google Scholar] [CrossRef]
- Lin, T.-R.; Chang, S.-W.; Chuang, S.L.; Zhang, Z.; Schuck, P.J. Coating Effect on Optical Resonance of Plasmonic Nanobowtie Antenna. Appl. Phys. Lett. 2010, 97, 063106. [Google Scholar] [CrossRef]
- Potts, S.E.; Keuning, W.; Langereis, E.; Dingemans, G.; van de Sanden, M.C.M.; Kessels, W.M.M. Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films. J. Electrochem. Soc. 2010, 157, P66. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Han, X.; Wang, X.; Meng, X. Atomic Layer Deposition of Two-Dimensional Layered Materials: Processes, Growth Mechanisms, and Characteristics. Matter 2020, 2, 587–630. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Puurunen, R.L. Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized Surface Plasmon Resonances in Aluminum Nanodisks. Nano Lett. 2008, 8, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Gérard, D.; Gray, S.K. Aluminium Plasmonics. J. Phys. D Appl. Phys. 2014, 48, 184001. [Google Scholar] [CrossRef]
- Nakamura, R.; Tokozakura, D.; Nakajima, H.; Lee, J.-G.; Mori, H. Hollow Oxide Formation by Oxidation of Al and Cu Nanoparticles. J. Appl. Phys. 2007, 101, 074303. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Hashimoto, T.; Zakharov, D.N.; Stach, E.A.; Rooney, A.P.; Berkels, B.; Thompson, G.E.; Haigh, S.J.; Burnett, T.L. Atomic-Scale Insights into the Oxidation of Aluminum. ACS Appl. Mater. Interfaces 2018, 10, 2230–2235. [Google Scholar] [CrossRef]
- Yang, Y.; Kushima, A.; Han, W.; Xin, H.; Li, J. Liquid-Like, Self-Healing Aluminum Oxide during Deformation at Room Temperature. Nano Lett. 2018, 18, 2492–2497. [Google Scholar] [CrossRef]
- Zhang, F.; Martin, J.; Plain, J. Long-Term Stability of Plasmonic Resonances Sustained by Evaporated Aluminum Nanostructures. Opt. Mater. Express OME 2019, 9, 85–94. [Google Scholar] [CrossRef]
- Renard, D.; Tian, S.; Ahmadivand, A.; DeSantis, C.J.; Clark, B.D.; Nordlander, P.; Halas, N.J. Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]Pyrene Detection. ACS Nano 2019, 13, 3117–3124. [Google Scholar] [CrossRef]
- Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; De Marco, L.; De Giorgi, M.; Nicotra, G.; Carbone, L.; Sanvitto, D.; et al. Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. J. Phys. Chem. C 2016, 120, 24314–24323. [Google Scholar] [CrossRef]
- Roy, P.; Badie, C.; Claude, J.-B.; Barulin, A.; Moreau, A.; Lumeau, J.; Abbarchi, M.; Santinacci, L.; Wenger, J. Preventing Corrosion of Aluminum Metal with Nanometer-Thick Films of Al2O3 Capped with TiO2 for Ultraviolet Plasmonics. ACS Appl. Nano Mater. 2021, 4, 7199–7205. [Google Scholar] [CrossRef]
- Renard, D.; Tian, S.; Lou, M.; Neumann, O.; Yang, J.; Bayles, A.; Solti, D.; Nordlander, P.; Halas, N.J. UV-Resonant Al Nanocrystals: Synthesis, Silica Coating, and Broadband Photothermal Response. Nano Lett. 2021, 21, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Gromov, A.; Ilyin, A.; Förter-Barth, U.; Teipel, U. Characterization of Aluminum Powders: II. Aluminum Nanopowders Passivated by Non-Inert Coatings. Propellants Explos. Pyrotech. 2006, 31, 401–409. [Google Scholar] [CrossRef]
- Shahravan, A.; Desai, T.; Matsoukas, T. Passivation of Aluminum Nanoparticles by Plasma-Enhanced Chemical Vapor Deposition for Energetic Nanomaterials. ACS Appl. Mater. Interfaces 2014, 6, 7942–7947. [Google Scholar] [CrossRef] [PubMed]
- Abdulagatov, A.I.; Yan, Y.; Cooper, J.R.; Zhang, Y.; Gibbs, Z.M.; Cavanagh, A.S.; Yang, R.G.; Lee, Y.C.; George, S.M. Al2O3 and TiO2 Atomic Layer Deposition on Copper for Water Corrosion Resistance. ACS Appl. Mater. Interfaces 2011, 3, 4593–4601. [Google Scholar] [CrossRef]
- Potts, S.E.; Schmalz, L.; Fenker, M.; Díaz, B.; Światowska, J.; Maurice, V.; Seyeux, A.; Marcus, P.; Radnóczi, G.; Tóth, L.; et al. Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection. J. Electrochem. Soc. 2011, 158, C132. [Google Scholar] [CrossRef]
- Li, M.; Jin, Z.-X.; Zhang, W.; Bai, Y.-H.; Cao, Y.-Q.; Li, W.-M.; Wu, D.; Li, A.-D. Comparison of Chemical Stability and Corrosion Resistance of Group IV Metal Oxide Films Formed by Thermal and Plasma-Enhanced Atomic Layer Deposition. Sci. Rep. 2019, 9, 10438. [Google Scholar] [CrossRef] [Green Version]
- Herzinger, C.M.; Johs, B.; McGahan, W.A.; Woollam, J.A.; Paulson, W. Ellipsometric Determination of Optical Constants for Silicon and Thermally Grown Silicon Dioxide via a Multi-Sample, Multi-Wavelength, Multi-Angle Investigation. J. Appl. Phys. 1998, 83, 3323–3336. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 EV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205. [Google Scholar] [CrossRef]
- Langereis, E.; Heil, S.B.S.; Knoops, H.C.M.; Keuning, W.; van de Sanden, M.C.M.; Kessels, W.M.M. In Situ Spectroscopic Ellipsometry as a Versatile Tool for Studying Atomic Layer Deposition. J. Phys. D Appl. Phys. 2009, 42, 073001. [Google Scholar] [CrossRef] [Green Version]
- Mattinen, M.; King, P.J.; Khriachtchev, L.; Heikkilä, M.J.; Fleming, B.; Rushworth, S.; Mizohata, K.; Meinander, K.; Räisänen, J.; Ritala, M.; et al. Atomic Layer Deposition of Crystalline Molybdenum Oxide Thin Films and Phase Control by Post-Deposition Annealing. Mater. Today Chem. 2018, 9, 17–27. [Google Scholar] [CrossRef]
- Haeberle, J.; Henkel, K.; Gargouri, H.; Naumann, F.; Gruska, B.; Arens, M.; Tallarida, M.; Schmeißer, D. Ellipsometry and XPS Comparative Studies of Thermal and Plasma Enhanced Atomic Layer Deposited Al2O3-Films. Beilstein J. Nanotechnol. 2013, 4, 732–742. [Google Scholar] [CrossRef] [Green Version]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Boidin, R.; Halenkovič, T.; Nazabal, V.; Beneš, L.; Němec, P. Pulsed Laser Deposited Alumina Thin Films. Ceram. Int. 2016, 42, 1177–1182. [Google Scholar] [CrossRef]
- Sarkar, S.; Gupta, V.; Kumar, M.; Schubert, J.; Probst, P.T.; Joseph, J.; König, T.A.F. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating. ACS Appl. Mater. Interfaces 2019, 11, 13752–13760. [Google Scholar] [CrossRef] [Green Version]
- Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M.I. Plasmon Hybridization in Nanoparticle Dimers. Nano Lett. 2004, 4, 899–903. [Google Scholar] [CrossRef]
- Mertens, J.; Eiden, A.L.; Sigle, D.O.; Huang, F.; Lombardo, A.; Sun, Z.; Sundaram, R.S.; Colli, A.; Tserkezis, C.; Aizpurua, J.; et al. Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene. Nano Lett. 2013, 13, 5033–5038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, J.M.; Li, S.; Ausman, L.K.; Schatz, G.C. Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2012, 116, 1627–1637. [Google Scholar] [CrossRef]
- Standridge, S.D.; Schatz, G.C.; Hupp, J.T. Toward Plasmonic Solar Cells: Protection of Silver Nanoparticles via Atomic Layer Deposition of TiO2. Langmuir 2009, 25, 2596–2600. [Google Scholar] [CrossRef]
- Bahk, Y.-M.; Kim, D.-S.; Park, H.-R. Large-Area Metal Gaps and Their Optical Applications. Adv. Opt. Mater. 2019, 7, 1800426. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.; Li, Z.; Zheng, M.; Liu, Q.; Chen, Y.; Yang, L.; Jiang, T.; Duan, H. Sensitive SERS Detection at the Single-Particle Level Based on Nanometer-Separated Mushroom-Shaped Plasmonic Dimers. Nanotechnology 2018, 29, 105301. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, C.; Li, J. Sub-5 Nm Metal Nanogaps: Physical Properties, Fabrication Methods, and Device Applications. Small 2019, 15, 1804177. [Google Scholar] [CrossRef]
- Duan, H.; Fernández-Domínguez, A.I.; Bosman, M.; Maier, S.A.; Yang, J.K.W. Nanoplasmonics: Classical down to the Nanometer Scale. Nano Lett. 2012, 12, 1683–1689. [Google Scholar] [CrossRef]
- Barulin, A.; Claude, J.-B.; Patra, S.; Moreau, A.; Lumeau, J.; Wenger, J. Preventing Aluminum Photocorrosion for Ultraviolet Plasmonics. J. Phys. Chem. Lett. 2019, 10, 5700–5707. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.F.J.; Macco, B.; Thissen, N.F.W.; Bol, A.A.; Kessels, W.M.M. (Erwin) Atomic Layer Deposition of Molybdenum Oxide from (NtBu)2(NMe2)2Mo and O2 Plasma. J. Vac. Sci. Technol. A Vac. Surf. Films 2016, 34, 01A103. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo, D.; Riminucci, F.; Manoccio, M.; Balestra, G.; Simeone, D.; Tobaldi, D.M.; Esposito, M.; Passaseo, A.; Tasco, V.; Cuscunà, M. Molybdenum Oxide Functional Passivation of Aluminum Dimers for Enhancing Optical-Field and Environmental Stability. Photonics 2022, 9, 523. https://doi.org/10.3390/photonics9080523
Lorenzo D, Riminucci F, Manoccio M, Balestra G, Simeone D, Tobaldi DM, Esposito M, Passaseo A, Tasco V, Cuscunà M. Molybdenum Oxide Functional Passivation of Aluminum Dimers for Enhancing Optical-Field and Environmental Stability. Photonics. 2022; 9(8):523. https://doi.org/10.3390/photonics9080523
Chicago/Turabian StyleLorenzo, Daniela, Fabrizio Riminucci, Mariachiara Manoccio, Gianluca Balestra, Daniela Simeone, David Maria Tobaldi, Marco Esposito, Adriana Passaseo, Vittorianna Tasco, and Massimo Cuscunà. 2022. "Molybdenum Oxide Functional Passivation of Aluminum Dimers for Enhancing Optical-Field and Environmental Stability" Photonics 9, no. 8: 523. https://doi.org/10.3390/photonics9080523
APA StyleLorenzo, D., Riminucci, F., Manoccio, M., Balestra, G., Simeone, D., Tobaldi, D. M., Esposito, M., Passaseo, A., Tasco, V., & Cuscunà, M. (2022). Molybdenum Oxide Functional Passivation of Aluminum Dimers for Enhancing Optical-Field and Environmental Stability. Photonics, 9(8), 523. https://doi.org/10.3390/photonics9080523