An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators
Abstract
:1. Introduction
1.1. Quantifying Aspects of Creativity in Science
1.2. Aim of the Current Work
2. Materials and Methods
2.1. Datasets
2.1.1. Creativity Research Articles
- PUBLICATION NAME: (psychology of aesthetics creativity and the arts) OR PUBLICATION NAME: (thinking skills and creativity) OR PUBLICATION NAME: (creativity research journal) OR PUBLICATION NAME: (journal of creative behavior)
- Refined by: PUBLICATION YEARS: (PY = 2009–2019) AND DOCUMENT TYPES: (ARTICLE).
- This resulted in a total of N = 1643 articles.
2.1.2. An Update of the biblio Dataset
- TITLE: (bibliometric*)
- Refined by: PUBLICATION YEARS: (2007 OR 2019 OR 2006 OR 2018 OR 2017 OR 2016 OR 2015 OR 2014 OR 2013 OR 2012 OR 2011 OR 2010 OR 2009 OR 2008) AND DOCUMENT TYPES: (ARTICLE)
- Analogous to the creation of the biblio dataset, this search focused on titles; but, here “bibliometric” was combined with an asterisk to include all words with the stem bibliometric. Again, articles were only retrieved from the time span between 2006 and 2009. This resulted in N = 2986 documents for replicating the findings obtained from creativity research.
2.2. Measures
2.2.1. Impact
2.2.2. Openness
2.2.3. Idea Density
2.2.4. Originality
2.3. Data Analysis
3. Results
3.1. Missing Data Pattern and Descriptive Statistics
3.2. Validity Findings
3.2.1. Discriminant Validity Findings
3.2.2. Convergent Validity Findings
4. Discussion
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bornmann, L. Scientific peer review. Annu. Rev. Inf. Sci. 2011, 45, 197–245. [Google Scholar] [CrossRef]
- Lawani, S.M. Some bibliometric correlates of quality in scientific research. Scientometrics 1986, 9, 13–25. [Google Scholar] [CrossRef]
- Freese, J.; Peterson, D. Replication in social science. Annu. Rev. Sociol. 2017, 43, 147–165. [Google Scholar] [CrossRef] [Green Version]
- McNutt, M. Journals unite for reproducibility. Science 2014, 346, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartley, J. Authors and their citations: A point of view. Scientometrics 2017, 110, 1081–1084. [Google Scholar] [CrossRef]
- Garfield, E. Citation indexes for science. Science 1955, 122, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. Citation analysis as a tool in journal evaluation. Science 1972, 178, 471–479. [Google Scholar] [CrossRef]
- Pan, R.K.; Fortunato, S. Author Impact Factor: Tracking the dynamics of individual scientific impact. Sci. Rep. 2015, 4, 4880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinze, T.; Bauer, G. Characterizing creative scientists in nano-S&T: Productivity, multidisciplinarity, and network brokerage in a longitudinal perspective. Scientometrics 2007, 70, 811–830. [Google Scholar] [CrossRef] [Green Version]
- Glänzel, W.; Moed, H. Journal impact measures in bibliometric research. Scientometrics 2002, 53, 171–193. [Google Scholar] [CrossRef]
- Shu, F.; Quan, W.; Chen, B.; Qiu, J.; Sugimoto, C.R.; Larivière, V. The role of Web of Science publications in China’s tenure system. Scientometrics 2020, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Van den Besselaar, P.; Sandström, U.; van der Weijden, I. The independence indicator. In Science & Technology Indicators; Archambault, E., Gingras, Y., Lariviere, V., Eds.; OST & Science Metrix: Montreal, QC, Canada, 2012; pp. 131–141. [Google Scholar]
- Brown, L.D.; Gardner, J.C. Using citation analysis to assess the impact of journals and articles on contemporary accounting research (CAR). J. Acc. R. 1985, 23, 84–109. [Google Scholar] [CrossRef]
- Albert, R.S. Madison Avenue comes to academe. Creat. Res. J. 1995, 8, 427–429. [Google Scholar] [CrossRef]
- Gardner, H.; Policastro, E. Naive Judgment and Expert Assessment: A Critique of the Attributional Perspective. Creat. Res. J. 1995, 8, 391–395. [Google Scholar] [CrossRef]
- Ludwig, A.M. What “explaining creativity” doesn’t explain. Creat. Res. J. 1995, 8, 413–416. [Google Scholar] [CrossRef]
- Runco, M.A. Insight for creativity, expression for impact. Creat. Res. J. 1995, 8, 377–390. [Google Scholar] [CrossRef]
- Sternberg, R.J. If you change your name to Mark Twain, will you be judged as creative? Creat. Res. J. 1995, 8, 367–370. [Google Scholar] [CrossRef]
- Moed, H.F. Applied Evaluative Informetrics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Runco, M.A.; Jaeger, G.J. The standard definition of creativity. Creat. Res. J. 2012, 24, 92–96. [Google Scholar] [CrossRef]
- Heinze, T. Creative accomplishments in science: Definition, theoretical considerations, examples from science history, and bibliometric findings. Scientometrics 2013, 95, 927–940. [Google Scholar] [CrossRef]
- Lubart, T.; Guignard, J. The generality-specificity of creativity: A multivariate approach. In Creativity: From Potential to Realization; Sternberg, R.J., Grigorenko, E.L., Singer, J.L., Eds.; American Psychological Association: Washington, DC, USA, 2004; pp. 43–56. [Google Scholar] [CrossRef]
- Sternberg, R.J.; Lubart, T. Defying the Crowd: Cultivating Creativity in an Age of Conformity; Free Press: New York, NY, USA, 1995. [Google Scholar]
- Runco, M.A.; Pritzker, S. Encyclopedia of Creativity, 3rd ed.; Elsevier: San Diego, CA, USA, In press.
- Simonton, D.K. Scientific Genius: A Psychology of Science; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- Simonton, D.K. Creativity in Science: Chance, Logic, Genius, and Zeitgeist; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Forthmann, B.; Szardenings, C.; Dumas, D. Testing equal odds in creativity research. Psychol. Aesthet. Creat. Arts. in press. [CrossRef]
- Forthmann, B.; Szardenings, C.; Dumas, D. On the conceptual overlap between the fluency contamination effect in divergent thinking scores and the chance view on scientific creativity. J. Creat. Behav. in press. [CrossRef] [Green Version]
- Forthmann, B.; Leveling, M.; Dong, Y.; Dumas, D. Investigating the quantity–quality relationship in scientific creativity: an empirical examination of expected residual variance and the tilted funnel hypothesis. Scientometrics. in press. [CrossRef]
- Wang, J. Knowledge creation in collaboration networks: Effects of tie configuration. Res. Policy 2016, 45, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Franceschet, M.; Costantini, A. The effect of scholar collaboration on impact and quality of academic papers. J. Inf. 2010, 4, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Leimu, R.; Koricheva, J. Does scientific collaboration increase the impact of ecological articles? BioScience 2005, 55, 438–443. [Google Scholar] [CrossRef]
- Long, H. More than appropriateness and novelty: Judges’ criteria of assessing creative products in science tasks. Think. Ski. Creat. 2014, 13, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Azoulay, P.; Zivin, J.S.G.; Manso, G. Incentives and creativity: Evidence from the academic life sciences. Rand J. Econ. 2011, 42, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.G.; Rzhetsky, A.; Evans, J.A. Tradition and innovation in scientists’ research strategies. Am. Sociol. Rev. 2015, 80, 875–908. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.K.; Porter, A.L.; Youtie, J.; Shapira, P. Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics 2013, 95, 351–370. [Google Scholar] [CrossRef]
- Funk, R.J.; Owen-Smith, J. A dynamic network measure of technological change. Manag. Sci. 2017, 63, 791–817. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wang, D.; Evans, J.A. Large teams develop and small teams disrupt science and technology. Nature 2019, 566, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, S.; Wang, J. Measuring originality in science. Scientometrics 2020, 122, 409–427. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, A. Psychological Testing, 6th ed.; Prentice Hall International: New York, NY, USA, 1988. [Google Scholar]
- Dollinger, S.J.; Urban, K.K.; James, T.A. Creativity and openness: Further validation of two creative product measures. Creat. Res. J. 2004, 16, 35–47. [Google Scholar] [CrossRef]
- Feist, G.J. A meta-analysis of personality in scientific and artistic creativity. Pers. Soc. Psychol. Rev. 1998, 2, 290–309. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.J. Conservatism, openness, and creativity: Patents granted to residents of American states. Creat. Res. J. 2011, 23, 339–345. [Google Scholar] [CrossRef]
- Stirling, A. A general framework for analysing diversity in science, technology and society. J. R. Soc. Interface 2007, 4, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Yegros-Yegros, A.; Rafols, I.; D’Este, P. Does interdisciplinary research lead to higher citation impact? The different effect of proximal and distal interdisciplinarity. PLoS ONE 2015, 10, e0135095. [Google Scholar] [CrossRef]
- Runco, M.A.; Acar, S. Divergent Thinking. In The Cambridge Handbook of Creativity; Kaufman, J.C., Sternberg, R.J., Eds.; Cambridge University Press: New York, NY, USA, 2019; pp. 224–253. [Google Scholar]
- Forthmann, B.; Jendryczko, D.; Scharfen, J.; Kleinkorres, R.; Benedek, M.; Holling, H. Creative ideation, broad retrieval ability, and processing speed: A confirmatory study of nested cognitive abilities. Intelligence 2019, 75, 59–72. [Google Scholar] [CrossRef]
- Runco, M.A.; Turkman, B.; Acar, S.; Nural, M.V. Idea density and the creativity of written works. J. Genius Eminence 2017, 2, 26–31. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Melo, A.S.; Bini, L.M.; Carvalho, P. Brazilian articles in international journals on Limnology. Scientometrics 2006, 67, 187–199. [Google Scholar] [CrossRef]
- Rubenson, D.L.; Runco, M.A. The psychoeconomic approach to creativity. New Ideas Psychol. 1992, 10, 131–147. [Google Scholar] [CrossRef]
- Root-Bernstein, R.S. Setting the stage for discovery. Science 1988, 28, 26–34. [Google Scholar] [CrossRef]
- Rubenson, D.L.; Runco, M.A. The psychoeconomic view of creative work in groups and organizations. Creat. Innov. Manag. 1995, 4, 232–241. [Google Scholar] [CrossRef]
- Mednick, S. The associative basis of the creative process. Psychol. Rev. 1962, 69, 220–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beketayev, K.; Runco, M.A. Scoring divergent thinking tests with a semantics-based algorithm. Eur. J. Psychol. 2016, 12, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M.R.; Hartmann, D.; Mendoza, M. Diverse: An R Package to analyze diversity in complex systems. R J. 2016, 8, 60–78. [Google Scholar] [CrossRef] [Green Version]
- Schubert, A. A reference-based Hirschian similarity measure for journals. Scientometrics 2010, 84, 133–147. [Google Scholar] [CrossRef]
- Zhang, L.; Rousseau, R.; Glänzel, W. Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. J. Assoc. Inf. Sci. Technol. 2016, 67, 1257–1265. [Google Scholar] [CrossRef]
- Brown, C.; Snodgrass, T.; Kemper, S.J.; Herman, R.; Covington, M.A. Automatic measurement of propositional idea density from part-of-speech tagging. Behav. Res. Methods 2008, 40, 540–545. [Google Scholar] [CrossRef]
- Snowdon, D.A.; Kemper, S.J.; Mortimer, J.A.; Greiner, L.H.; Wekstein, D.R.; Markesbery, W.R. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: Findings from the Nun Study. JAMA 1996, 275, 528–532. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 13 May 2020).
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Azur, M.J.; Stuart, E.A.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.W. NHST is still logically flawed. Scientometrics 2018, 115, 627–635. [Google Scholar] [CrossRef]
- Golino, H.F.; Demetriou, A. Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis. Intelligence 2017, 62, 54–70. [Google Scholar] [CrossRef]
- Golino, H.F.; Epskamp, S. Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE 2017, 12, e0174035. [Google Scholar] [CrossRef] [Green Version]
- Golino, H.F.; Christensen, A.P.; Moulder, R. EGAnet: Exploratory Graph Analysis—A Framework for Estimating the Number of Dimensions in Multivariate Data Using Network Psychometrics. R Package Version 0.9.1. 2020. Available online: https://CRAN.R-project.org/package=EGAnet (accessed on 13 May 2020).
- Jamshidian, M.; Jalal, S.J. Tests of homoscedasticity, normality, and missing completely at random for incomplete multivariate data. Psychometrika 2010, 75, 649–674. [Google Scholar] [CrossRef] [Green Version]
- Jamshidian, M.; Jalal, S.J.; Jansen, C. MissMech: An R package for testing homoscedasticity, multivariate normality, and missing completely at random (MCAR). J. Stat. Softw. 2014, 56, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 1959, 56, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Jaussi, K.S.; Randel, A.E. Where to look? Creative self-efficacy, knowledge retrieval, and incremental and radical creativity. Creat. Res. J. 2014, 26, 400–410. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1988. [Google Scholar]
Creativity Dataset | Bibliometric Dataset | |||||
---|---|---|---|---|---|---|
N | M | SD | N | M | SD | |
Total citations | 1643 | 11.31 | 17.22 | 2986 | 11.05 | 30.55 |
Total citations controlled | 1622 | 0.00 | 14.94 | 2962 | 0.00 | 29.09 |
Variety—Journals | 1633 | 0.26 | 0.13 | 2941 | 0.08 | 0.07 |
Disparity—Journals | 1583 | 0.74 | 0.11 | 2624 | 0.87 | 0.10 |
Rao-Stirling—Journals | 1583 | 0.06 | 0.07 | 2624 | 0.01 | 0.03 |
Variety—First authors | 1630 | 0.21 | 0.11 | 2911 | 0.06 | 0.05 |
Disparity—First authors | 1543 | 0.95 | 0.09 | 2391 | 0.96 | 0.11 |
Rao-Stirling—First authors | 1543 | 0.03 | 0.07 | 2391 | 0.01 | 0.04 |
Idea density—Abstracts | 1631 | 0.30 | 0.04 | 2942 | 0.30 | 0.04 |
Idea density—Titles | 1643 | 0.27 | 0.11 | 2986 | 0.24 | 0.09 |
Origbase − S = 4 | 953 | 0.93 | 0.15 | 1360 | 0.94 | 0.14 |
Origweighte1 − S = 4 | 953 | 0.96 | 0.10 | 1360 | 1.00 | 0.03 |
Origbase − S = 8 | 616 | 0.93 | 0.12 | 912 | 0.95 | 0.12 |
Origweighted1 − S = 8 | 616 | 0.95 | 0.11 | 912 | 0.99 | 0.06 |
Validity Criterion | |||||
---|---|---|---|---|---|
Total Citations Controlled | Origbase − S = 4 | Origweighte1 − S = 4 | Origbase − S = 8 | Origweighted1 − S = 8 | |
Total citations controlled | – | −0.023 [−0.075, 0.029] | 0.036 [−0.018, 0.090] | −0.044 [−0.103, 0.017] | 0.002 [−0.059, 0.064] |
Variety—Journals | 0.157 [0.109, 0.203] * | 0.062 [−0.001, 0.122] * | 0.186 [0.131, 0.236] * | 0.033 [−0.041, 0.112] | 0.189 [0.118, 0.262] * |
Disparity—Journals | −0.027 [−0.076, 0.023] | −0.039 [−0.104, 0.024] | −0.066 [−0.132, −0.003] | 0.035 [−0.046, 0.109] | 0.025 [−0.070, 0.131] |
Rao-Stirling—Journals | 0.135 [0.086, 0.184] * | 0.002 [−0.062, 0.062] | 0.075 [0.017, 0.129] * | −0.035 [−0.124, 0.044] | 0.057 [−0.018 0.123] |
Variety—First authors | 0.154 [0.107, 0.201] * | 0.077 [0.013, 0.140] * | 0.204 [0.153, 0.253] * | 0.064 [−0.006, 0.131] * | 0.221 [0.153, 0.282] * |
Disparity—First authors | −0.014 [−0.063, 0.035] | −0.005 [−0.065, 0.056] | 0.013 [−0.046, 0.081] | −0.003 [−0.067, 0.063] | 0.022 [−0.060, 0.149] |
Rao-Stirling—First authors | 0.103 [0.051, 0.154] * | −0.031 [−0.092, 0.028] | −0.001 [−0.096, 0.061] | −0.077 [−0.150, −0.005] | −0.062 [−0.210, 0.033] |
Idea density—Abstracts | 0.025 [−0.023, 0.073] | 0.062 [−0.004, 0.124] * | 0.058 [−0.001, 0.115] * | 0.088 [0.017, 0.162] * | 0.062 [−0.040, 0.145] |
Idea density—Titles | −0.006 [−0.054, 0.042] | −0.016 [−0.084, 0.044] | −0.014 [−0.074, 0.052] | −0.014 [−0.083, 0.055] | −0.051 [−0.133, 0.029] |
Validity Criterion | |||||
---|---|---|---|---|---|
Total Citations Controlled | Origbase – S = 4 | Origweighte1 – S = 4 | Origbase – S = 8 | Origweighted1 – S = 8 | |
Total citations controlled | – | −0.047 [−0.086, −0.007] | −0.001 [−0.044, 0.044] | −0.039 [−0.082,0.004] | 0.006 [−0.038, 0.051] |
Variety—Journals | 0.097 [0.061, 0.132] * | 0.066 [0.009, 0.111] * | 0.081 [0.031, 0.128] * | 0.099 [0.046, 0.150] * | 0.121 [0.059 0.173] * |
Disparity—Journals | 0.014 [−0.023, 0.050] | −0.087 [−0.144, −0.025] | −0.043 [−0.123, 0.131] | −0.099 [−0.163, −0.040] | −0.103 [−0.182, −0.022] |
Rao-Stirling—Journals | 0.016 [−00.020 00.051] | 0.015 [−0.033, 0.055] | −0.013 [−0.143, 0.043] | −0.017 [−0.034, 0.060] | −0.083 [−0.333, 0.044] |
Variety—First authors | 0.090 [0.055, 0.126] * | 0.069 [0.022, 0.110] * | 0.043 [−0.107, 0.099] | 0.091 [0.044, 0.137] * | 0.036 [−0.112, 0.129] |
Disparity—First authors | 0.025 [−0.016, 0.063] | −0.042 [−0.083, 0.003] | 0.006 [−0.051, 0.151] | −0.024 [−0.073, 0.048] | 0.013 [−0.061, 0.246] |
Rao-Stirling—First authors | 0.026 [−0.014, 0.087] | −0.007 [−0.052, 0.037] | −0.027 [−0.303,0.043] | −0.037 [−0.092, 0.018] | −0.022 [−0.182, 0.041] |
Idea density—Abstracts | −0.011 [−0.046, 0.025] | 0.012 [−0.048, 0.070] | −0.006 [−0.074, 0.070] | 0.028 [−00.052, 0.136] | −0.063 [−0.158, 0.064] |
Idea density—Titles | 0.004 [−0.032, 0.039] | 0.037 [−0.019, 0.091] | −0.022 [−0.085, 0.047] | 0.013 [−0.063, 0.092] | 0.004 [−0.059, 0.083] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forthmann, B.; Runco, M.A. An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators. Publications 2020, 8, 34. https://doi.org/10.3390/publications8020034
Forthmann B, Runco MA. An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators. Publications. 2020; 8(2):34. https://doi.org/10.3390/publications8020034
Chicago/Turabian StyleForthmann, Boris, and Mark A. Runco. 2020. "An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators" Publications 8, no. 2: 34. https://doi.org/10.3390/publications8020034
APA StyleForthmann, B., & Runco, M. A. (2020). An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators. Publications, 8(2), 34. https://doi.org/10.3390/publications8020034