The Effect of Blanching on Phytochemical Content and Bioactivity of Hypochaeris and Hyoseris Species (Asteraceae), Vegetables Traditionally Used in Southern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials
2.3. Blanching
2.4. Extraction Procedure
2.5. Determination of pH, Titratable Acidity and Total Soluble Solid Content
2.6. Total Phenol Content (TPC) and Total Flavonoid Content (TFC)
2.7. Spectrophotometric Determination of Carotenoids
2.8. Chlorophyll Determination
2.9. Radical Scavenging Activity Assays
2.10. Ferric Reducing Ability Power (FRAP) Assay
2.11. β-Carotene Bleaching Test
2.12. Pancreatic Lipase Inhibitory Activity
2.13. Carbohydrate-Hydrolysing Enzyme Inhibitory Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Content
3.2. Antioxidant Activity
3.3. Inhibition of Enzymes linked to Obesity
3.4. Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gastaldo, P.; Barberis, G.; Fossati, F. Le piante della medicina tradizionale nei dintorni di Praglia (Appennino Ligure-Piemontese). Atti. Dell’accad. Ligur. Sci. Lett. 1978, 35, 1–35. [Google Scholar]
- Bellomaria, B.; Lattanzi, E. Le piante del territorio di Cupra Marittima (Marche) attualmente usate nella medicina popolare. Arch. Bot. Biogeogr. Ital. 1982, 58, 1–19. [Google Scholar]
- Guarrera, P.M. Usi tradizionali delle piante in alcune aree marchigiane. Inf. Bot. Ital. 1990, 22, 155–167. [Google Scholar]
- Ghirardini, M.P.; Carli, M.; Del Vecchio, N.; Rovati, A.; Cova, O.; Valigi, F.; Agnetti, G.; Macconi, M.; Adamo, D.; Traina, M.; et al. The importance of a taste. A comparative study on wild food plant consumption in twenty-one local communities in Italy. J. Ethnobiol. Ethnomed. 2007, 3, 22–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornara, L.; La Rocca, A.; Marsili, S.; Mariotti, M.G. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J. Ethnopharmacol. 2009, 125, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Lentini, F.; Venza, F. Wild food plants of popular use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giambanelli, E.; D’antuono, L.; Ferioli, F.; Frenich, A.; Romero-González, R. Sesquiterpene lactones and inositol 4-hydroxyphenylacetic acid derivatives in wild edible leafy vegetables from Central Italy. J. Food Comp. Anal. 2018, 72, 1–6. [Google Scholar] [CrossRef]
- Maruca, G.; Spampinato, G.; Turiano, D.; Laghetti, G.; Musarella, C.M. Ethnobotanical notes about medicinal and useful plants of the Reventino Massif tradition (Calabria region, Southern Italy). Genet. Resour. Crop. Evol. 2019, 66, 1027–1040. [Google Scholar] [CrossRef]
- Brullo, S.; Minissale, P.; Siracusa, G.; Spampinato, G. Considerazioni fitogeografiche su Hyoseris taurina (Pamp.) Martinoli (Asteraceae). Giorn. Bot. Ital. 1990, 124, 104. [Google Scholar]
- Pignatti, S.; Guarino, R.; La Rosa, M. (Eds.) Flora d’Italia, 2nd ed.; Edagricole: Milano, Italy, 2018; Volume 3. [Google Scholar]
- Guarrera, P.M.; Savo, V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J. Ethnopharmacol. 2013, 146, 659–680. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 5, 202–234. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Ampofo, A.G.; Boateng, E.B. Beyond 2020: Modelling obesity and diabetes prevalence. Diabetes Res. Clin. Pract. 2020, 167. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [Green Version]
- Găman, M.; Epingeac, M.; Diaconu, C.; Găman, A. Oxidative stress levels are increased in type 2 diabetes mellitus and obesity. J. Hypertens. 2019, 37, e265. [Google Scholar] [CrossRef]
- Lucci, P.; Pacetti, D.; Loizzo, M.R.; Frega, N.G. Canning: Impact on food products quality attributes. In Food Processing Technologies, Impact on Product Attributes; Jaiswal Amit, K., Ed.; Taylor & Francis Group; CRC Press: Boca Raton, FL, USA, 2016; Chapter 3; pp. 41–60. ISBN 9781315372365. [Google Scholar]
- Lin, C.H.; Chang, C.Y. Textural change and antioxidant properties of broccoli under different cooking treatments. Food Chem. 2005, 90, 9–15. [Google Scholar] [CrossRef]
- Musarella, C.M.; Paglianiti, I.; Cano-Ortiz, A.; Spampinato, G. Indagine etnobotanica nel territorio del Poro e delle Preserre Calabresi (Vibo Valentia, S-Italia). Atti. Soc. Tosc. Sci. Nat. Mem. Ser. B 2019, 126, 13–28. [Google Scholar]
- Sicari, V.; Loizzo, M.R.; Tundis, R.; Mincione, A. Pellicanò, Portulaca oleracea L. (Purslane) extracts display antioxidant and hypoglycaemic effects. J. Appl. Bot. Food Qual. 2018, 91, 39–46. [Google Scholar]
- Loizzo, M.R.; Tundis, R.; Sut, S.; Dall’acqua, S.; Ilardi, V.; Leporini, M.; Falco, T.; Sicari, V.; Bruno, M. High-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry (HPLC-ESI-MSn) analysis and bioactivity useful for prevention of “diabesity” of Allium commutatum Guss. Plant Foods Hum. Nutr. 2020, 75, 124–130. [Google Scholar] [CrossRef]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Buschmann, C. Current Protocols in Food Analytical Chemistry; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001; Available online: http://onlinelibrary.wiley.com (accessed on 16 December 2020).
- Loizzo, M.R.; Sicari, V.; Pellicanò, T.; Xiao, J.; Poiana, M.; Tundis, R. Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food Chem. Toxicol. 2019, 127, 127–134. [Google Scholar] [CrossRef] [PubMed]
- El-Shiekh, R.A.; Al-Mahdy, D.A.; Hifnawy, M.S.; Abdel-Sattar, E.A. In-vitro screening of selected traditional medicinal plants for their anti-obesity and anti-oxidant activities. S. Afr. J. Bot. 2019, 123, 43–50. [Google Scholar] [CrossRef]
- Parmar, I.; Vasantha Rupasinghe, H.P. Antioxidant Capacity and Anti-diabetic Activity of Wild Berry Stem Infusions. Eur. J. Med. Plant. 2015, 8, 11–28. [Google Scholar] [CrossRef]
- Loranty, A.; Rembiałkowska, E.; Rosa, E.A.S.; Bennet, R.S. Identification, quantification and availability of carotenoids and chlorophylls in fruit, herb and medicinal teas. J. Food Comp. Anal. 2010, 23, 432–441. [Google Scholar] [CrossRef]
- Suzuki, Y.; Shioi, Y. Identification of chlorophylls and carotenoids in major teas by high-performance liquid chromatography with photodiode array detection. J. Agric. Food Chem. 2003, 51, 5307–5314. [Google Scholar] [CrossRef]
- Kao, F.J.; Chiu, Y.S.; Chiang, W.D. Effect of water cooking on the antioxidant capacity of carotenoid-rich vegetables in Taiwan. J. Food Drug Anal. 2014, 22, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, K.D.; Gunathilake, P.; Somathilaka Ranaweera, K.K.D.; Vasantha Rupasinghe, H.P. Effect of Different Cooking Methods on Polyphenols, Carotenoids and Antioxidant Activities of Selected Edible Leaves. Antioxidants 2018, 7, 117. [Google Scholar]
- Amin, I.; Zamaliah, M.; Marjan, C.; Foong, W. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar]
- Amin, I.; Lee, W.L. Effect of different blanching times on antioxidant properties in selected cruciferous vegetables. J. Sci. Food Agric. 2005, 85, 2314–2320. [Google Scholar] [CrossRef]
- Bamidele, O.P.; Fasogbon, M.B.; Adebowale, O.J.; Adeyanju, A.A. Effect of Blanching Time on Total Phenolic, Antioxidant Activities and Mineral Content of Selected Green Leafy Vegetables. Curr. J. Appl. Sci. Technol. 2017, 24, 1–8. [Google Scholar] [CrossRef]
- Hong-Wei, X.; Zhongli, P.; Li-Zhen, D.; El-Mashad, H.M.; Xu-Hai, Y.; Mujumdar, A.S.; Zhen-Jiang, G.; Qian, Z. Recent developments and trends in thermal blanching—A comprehensive review. Inf. Process. Agric. 2017, 4, 101–127. [Google Scholar]
- Gawlik-Dziki, U. Effect of hydrothermal treatment on the antioxidant properties of broccoli (Brassica oleracea var. botrytis italica) florets. Food Chem. 2008, 109, 393–401. [Google Scholar] [CrossRef]
- Sikora, E.; Cieslik, E.; Leszczynska, T.; Filipiak-Florkiewicz, A.; Pisulewski, P.M. The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem. 2008, 107, 55–59. [Google Scholar] [CrossRef]
- Jaiswal, A.K. Blanching as a treatment process: Effect on polyphenols and antioxidant capacity of cabbage. In Processing and Impact on Active Components in Food, 5nd ed.; Abu-Ghannam, N., Amit, J., Eds.; Elsevier/Academic Press: London, UK, 2015; pp. 35–43. [Google Scholar]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachtel-Galor, S.; Wong, K.W.; Benzie, I.F. The effect of cooking on Brassica vegetables. Food Chem. 2008, 110, 706–710. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Katsuda, M.; Oda, Y.; Terao, J.; Kanazawa, K.; Oshima, S.; Inakuma, T.; Ishiguro, Y.; Takamura, H.; Matoba, T. Influence of polyphenol and ascorbateoxidases during cooking process on the radical-scavenging activity of vegetables. Food Sci. Technol. Res. 2003, 9, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Senguttuvan, J.; Paulsamy, S.; Karthika, K. Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Trop. Biomed. 2014, 4, S359–S367. [Google Scholar] [CrossRef]
- Savo, V.; Salomone, F.; Mattoni, E.; Tofani, D.; Caneva, G. Traditional salads and soups with wild plants as a source of antioxidants: A comparative chemical analysis of five species growing in central Italy. Evid. Based Compl. Alter. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Souilah, N.; Ullah, Z.; Bendif, H.; Medjroubi, K.; Hazmoune, T.; Hamel, T.; Öztürk, M.; Nieto, G.; Akkal, S. Phenolic compounds from an algerian endemic species of Hypochaeris laevigata var. hipponensis and investigation of antioxidant activities. Plants 2020, 9, 514. [Google Scholar] [CrossRef]
- Ko, Y.M.; Eom, T.K.; Song, S.K.; Jo, G.Y.; Kim, J.S. Tyrosinase and α-Glucosidase Inhibitory Activities and Antioxidant Effects of Extracts from Different Parts of Hypochaeris radicata. Korean J. Med. Crop. Sci. 2017, 25, 139–141. [Google Scholar] [CrossRef]
- D’agostino, M.F.; Sanz, J.; Martínez-Castro, I.; Giuffrè, A.M.; Sicari, V.; Soria, A.C. Statistical analysis for improving data precision in the SPME GC–MS analysis of blackberry (Rubus ulmifolius Schott) volatiles. Talanta 2014, 125, 248–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sampling Locations | Latitude | Longitude | Altitude m a.s.l. |
---|---|---|---|
Cucullaro | 38.166667° | 15.850000° | 1300 |
Scilla | 38.250000° | 15.733333° | 73 |
Trepitò | 38.316667° | 16.150000° | 880 |
Sample | TSS | TA | pH |
---|---|---|---|
Hypochaeris leavigata (HL) | |||
HL1 | 0.6 ± 0.05 a | 5.2 ± 2.0 a | 6.0 ± 2.6 b |
HL2 | 0.1 ± 0.01 c | 0.8 ± 0.07 c | 6.6 ± 2.7 a |
HL3 | 0.4 ± 0.04 b | 1.9 ± 1.3 b | 6.2 ± 2.4 b |
Sign. | ** | ** | ** |
Hypochaeris radicata (HR) | |||
HR1 | 0.6 ± 0.07 a | 4.5 ± 1.9 a | 6.0 ± 2.6 b |
HR2 | 0.2 ± 0.02 b | 0.7 ± 0.06 c | 6.4 ± 2.3 a |
HR3 | 0.7 ± 0.08 a | 2.1 ± 1.4 b | 6.5 ± 2.5 a |
Sign. | ** | ** | ** |
Hyoseris radiata(HRA) | |||
HRA1 | 0.4 ± 0.03 a | 6.8 ± 2.9 a | 5.8 ± 2.2 b |
HRA2 | 0.3 ± 0.02 b | 1.4 ± 1.1 c | 6.4 ± 2.4 a |
HRA3 | 0.4 ± 0.04 a | 1.7 ± 1.2 b | 6.2 ± 2.3 a |
Sign. | ** | ** | ** |
Hyoseris lucidasubsp. taurina (HT) | |||
HT1 | 0.9 ± 0.1 a | 6.3 ± 2.7 a | 5.9 ± 2.2 b |
HT2 | 0.7 ± 0.09 b | 2.3 ± 1.5 c | 6.2 ± 2.4 a |
HT3 | 0.5 ± 0.06 a | 2.1 ± 1.2 b | 6.4 ± 2.5 a |
Sign. | ** | ** | ** |
Sample | TCC (mg βC/100 g FW) | Chlorophylls (mg/kg FW) | TPC (mg GAE/100 g FW) | TFC (mg QE/100 g FW) |
---|---|---|---|---|
Hypochaeris leavigata (HL) | ||||
HL1 | 351.8 ± 5.1 a | 170.2 ± 3.2 a | 946.5 ± 6.2 a | 732.7 ± 6.0 a |
HL2 | 215.9 ± 4.7 c | 106.8 ± 3.1 c | 378.1 ± 5.1 c | 179.4 ± 3.2 b |
HL3 | 298.1 ± 4.9 b | 163.0 ± 3.2 b | 623.0 ± 5.9 b | 569.6 ± 5.7 c |
Sign | ** | ** | ** | ** |
Hypochaeris radicata (HR) | ||||
HR1 | 449.5 ± 5.5 a | 191.7 ± 3.6 a | 1103.6 ± 6.5 a | 769.2 ± 6.1 a |
HR2 | 236.9 ± 4.5 c | 118.4 ± 3.3 c | 434.3 ± 5.4 c | 322.5 ± 4.2 c |
HR3 | 266.0 ± 4.6 b | 143.2 ± 3.4 b | 550.8 ± 5.6 b | 375.0 ± 4.3 b |
Sign | ** | ** | ** | ** |
Hyoseris radiata(HRA) | ||||
HRA1 | 386.7 ± 5.2 a | 212.3 ± 4.0 a | 975.3 ± 6.2 a | 855.6 ± 5.9 a |
HRA2 | 181.3 ± 3.5 c | 89.3 ± 2.9 c | 380.1 ± 4.2 c | 277.1 ± 3.8 c |
HRA3 | 240.6 ± 4.5 b | 136.7 ± 3.2 b | 550.7 ± 5.2 b | 370.4 ± 4.0 b |
Sign | ** | ** | ** | ** |
Hyoseris lucidasubsp. taurina (HT) | ||||
HT1 | 532.4 ± 5.8 a | 187.4 ± 3.4 a | 997.6 ± 6.3 a | 796.8 ± 6.0 a |
HT2 | 202.6 ± 3.5 b | 106.4 ± 3.1 c | 416.1 ± 5.3 c | 436.2 ± 5.3 b |
HT3 | 205.2 ± 3.6 b | 109.4 ± 3.2 b | 627.5 ± 5.8 b | 447.3 ± 5.4 b |
Sign. | ** | ** | ** | ** |
Samples | β-Carotene Bleaching Test IC50 (µg/mL) | FRAP μMFe (II)/g | ABTS IC50 (µg/mL) | DPPH IC50 (µg/mL) | |
---|---|---|---|---|---|
t = 30 min | t = 60 min | ||||
Hypochaeris leavigata(HL) | |||||
HL1 | 46.7 ± 3.0 b | 48.5 ± 3.1 b | 84.4 ± 3.8 b | 4.7 ± 0.8 c | 24.7 ± 2.2 c |
HL2 | 39.6 ± 2.3 c | 30.1 ± 1.9 c | 39.1 ± 3.4 c | 7.9 ± 1.2 a | 43.6 ± 3.5 a |
HL3 | 48.7 ± 3.1 a | 59.0 ± 3.6 a | 92.6 ± 4.0 a | 5.9 ± 0.9 b | 37.6 ± 3.1 b |
Sign. | ** | ** | ** | ** | ** |
Hypochaeris radicata(HR) | |||||
HR1 | 54.6 ± 3.3 b | 58.5 ± 3.4 b | 41.6 ± 3.2 c | 7.8 ± 1.2 c | 18.7 ± 1.5 c |
HR2 | 48.1 ± 2.8 c | 35.7 ± 1.4 c | 53.8 ± 3.5 a | 12.3 ± 1.5 a | 41.6 ± 3.0 a |
HR3 | 60.5 ± 3.8 a | 63.9 ± 3.8 a | 49.2 ± 3.5 b | 13.7 ± 1.6 b | 23.7 ± 1.9 b |
Sign. | ** | ** | ** | ** | ** |
Hyoseris radiata(HRA) | |||||
HRA1 | 51.7 ± 3.5 a | 41.7 ± 2.4 a | 73.5 ± 4.1 a | 8.8 ± 0.9 c | 37.6 ± 2.2 b |
HRA2 | 18.7 ± 1.3 c | 14.1 ± 0.8 c | 38.9 ± 3.1 c | 11.8 ± 1.1 a | 51.5 ± 3.2 a |
HRA3 | 26.4 ± 1.6 b | 29.2 ± 1.1 b | 41.1 ± 2.9 b | 10.1 ± 1.0 b | 29.7 ± 2.0 c |
Sign. | ** | ** | ** | ** | ** |
Hyoseris lucida subsp. taurina (HT) | |||||
HT1 | 84.7 ± 3.9 a | 99.1 ± 4.2 a | 54.7 ± 3.6 a | 1.8 ± 0.3 c | 33.6 ± 2.0 c |
HT2 | 41.4 ± 2.1 b | 23.8 ± 1.8 c | 41.0 ± 3.1 c | 4.1 ± 0.9 a | 54.5 ± 3.2 a |
HT3 | 39.1 ± 2.5 c | 31.1 ± 2.1 b | 53.2 ± 3.5 b | 2.9 ± 0.5 b | 42.6 ± 2.5 b |
Sign. | ** | ** | ** | ** | ** |
Sample | Lipase | α-Amylase | α-Glucosidase |
---|---|---|---|
Hypochaeris leavigata (HL) | |||
HL1 | 58.2 ± 1.5 c | 42.7 ± 1.3 c | 31.3 ± 1.3 c |
HL2 | 85.0 ± 1.8 a | 94.9 ± 2.0 a | 81.6 ± 1.8 a |
HL3 | 66.4 ± 1.7 b | 56.8 ± 1.5 b | 62.3 ± 1.6 b |
Sign. | ** | ** | ** |
Hypochaeris radicata (HR) | |||
HR1 | 52.4 ± 1.5 c | 56.9 ± 1.4 c | 37.6 ± 1.3 c |
HR2 | 81.4 ± 1.7 a | 112.9 ± 2.1 a | 118.8 ± 2.3 a |
HR3 | 62.8 ± 1.7 b | 90.1 ± 2.0 b | 43.9 ± 1.4 b |
Sign. | ** | ** | ** |
Hyoseris radiata (HRA) | |||
HRA1 | 39.8 ± 1.4 c | 79.4 ± 1.7 c | 41.9 ± 1.4 c |
HRA2 | 85.7 ± 1.8 a | 99.1 ± 1.9 a | 84.5 ± 1.8 a |
HRA3 | 65.7 ± 1.7 b | 83.4 ± 1.8 b | 51.9 ± 1.5 b |
Sign. | ** | ** | ** |
Hyoseris lucidasubsp. taurina (HT) | |||
HT1 | 73.5 ± 1.7 c | 74.0 ± 1.7 c | 63.1 ± 1.6 c |
HT2 | 89.6 ± 1.9 a | 94.2 ± 1.9 a | 94.9 ± 1.9 a |
HT3 | 78.8 ± 1.8 b | 82.8 ± 1.6 b | 74.4 ± 1.7 b |
Sign. | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sicari, V.; Loizzo, M.R.; Sanches Silva, A.; Romeo, R.; Spampinato, G.; Tundis, R.; Leporini, M.; Musarella, C.M. The Effect of Blanching on Phytochemical Content and Bioactivity of Hypochaeris and Hyoseris Species (Asteraceae), Vegetables Traditionally Used in Southern Italy. Foods 2021, 10, 32. https://doi.org/10.3390/foods10010032
Sicari V, Loizzo MR, Sanches Silva A, Romeo R, Spampinato G, Tundis R, Leporini M, Musarella CM. The Effect of Blanching on Phytochemical Content and Bioactivity of Hypochaeris and Hyoseris Species (Asteraceae), Vegetables Traditionally Used in Southern Italy. Foods. 2021; 10(1):32. https://doi.org/10.3390/foods10010032
Chicago/Turabian StyleSicari, Vincenzo, Monica R. Loizzo, Ana Sanches Silva, Rosa Romeo, Giovanni Spampinato, Rosa Tundis, Mariarosaria Leporini, and Carmelo M. Musarella. 2021. "The Effect of Blanching on Phytochemical Content and Bioactivity of Hypochaeris and Hyoseris Species (Asteraceae), Vegetables Traditionally Used in Southern Italy" Foods 10, no. 1: 32. https://doi.org/10.3390/foods10010032
APA StyleSicari, V., Loizzo, M. R., Sanches Silva, A., Romeo, R., Spampinato, G., Tundis, R., Leporini, M., & Musarella, C. M. (2021). The Effect of Blanching on Phytochemical Content and Bioactivity of Hypochaeris and Hyoseris Species (Asteraceae), Vegetables Traditionally Used in Southern Italy. Foods, 10(1), 32. https://doi.org/10.3390/foods10010032