Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Experimental Farm, and Feeding Management
2.2. Milk Collection, Cheese Manufacture and Sampling
2.3. Chemical Analyses
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Physicochemical Composition and Antioxidant Status
3.2. Fatty Acid Composition
3.3. Volatile Compounds
4. Discussion
4.1. Physicochemical Composition and Antioxidant Status
4.2. Fatty Acid Composition
4.3. Volatile Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-Jerrett, E.; Mancilla-Leytón, J.M.; Delgado-Pertíñez, M.; Mena, Y. The contribution of traditional meat goat farming systems to human wellbeing and its importance for the sustainability of this livestock subsector. Sustainability 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- ARCA. Ovella Roja Mallorquina. Available online: https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo-razas/ovino/roja-mallorquina/default.aspx. (accessed on 5 March 2020). (In Spanish).
- Vinyoles i Vidal, T.M. Notes sobre el formatge de Mallorca. Bolletí Soc. Arqueol. Lul·Liana 1991, 47, 75–88. [Google Scholar]
- Artaud-Wild, S.M.; Connor, S.; Sexton, G.; Connor, W.E. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 1993, 88, 2771–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy fats and cardiovascular disease: Do we really need to be concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- McGrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; de Gouvea, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Vet. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Elgersma, A.; Tamminga, S.; Ellen, G. Modifying milk composition through forage. Anim. Feed Sci. Technol. 2006, 131, 207–225. [Google Scholar] [CrossRef]
- Capuano, E.; van der Veer, G.; Boerrigter-Eenling, R.; Elgersma, A.; Rademaker, J.; Sterian, A.; van Ruth, S.M. Verification of fresh grass feeding, pasture grazing and organic farming by cows farm milk fatty acid profile. Food Chem. 2014, 164, 234–241. [Google Scholar] [CrossRef]
- Rubino, R. A special section on Latte Nobile: An evolving model. J. Nutrit. Ecol. Food Res. 2014, 2, 214–222. [Google Scholar] [CrossRef]
- Méndez, C. La leche fresca de Lidl, la primera que cuenta con certificado de pastoreo y de bienestar animal. Aral 2018, 1649, 44–45. [Google Scholar]
- Gnädig, S.; Chamba, J.F.; Perreard, E.; Chappaz, S.; Chardigny, J.M.; Rickert, R.; Steinhart, H.; Sébédio, J.L. Influence of manufacturing conditions on the conjugated linoleic acid content and the isomer composition in ripened French Emmental cheese. J. Dairy Res. 2004, 71, 367–371. [Google Scholar]
- Valdivielso, I.; Bustamante, M.Á.; Buccioni, A.; Franci, O.; Ruíz de Gordoa, J.C.; de Renobales, M.; Barron, L.J.R. Commercial sheep flocks–fatty acid and fat-soluble antioxidant composition of milk and cheese related to changes in feeding management throughout lactation. J. Dairy Res. 2015, 82, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Bodkowski, R.; Czyż, K.; Kupczyński, R.; Patkowska-Sokoła, B.; Nowakowski, P.; Wiliczkiewicz, A. Lipid complex effect on fatty acid profile and chemical composition of cow milk and cheese. J. Dairy Sci. 2016, 99, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskaridis, K.; Serafeimidou, A.; Zlatanos, S.; Gylou, E.; Kontorepanidou, E.; Sagredos, A. Changes in fatty acid profile of feta cheese including conjugated linoleic acid. J. Sci. Food Agric. 2013, 93, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Bocquel, D.; Marquis, R.; Dromard, M.P.; Salamin, A.; Rey-Siggen, J.; Héritier, J.; Kosinska-Cagnazzo, A.; Andlauer, W. Effect of flaxseed supplementation of dairy cows’ forage on physicochemical characteristic of milk and Raclette cheese. Int. J. Dairy Technol. 2016, 69, 129–136. [Google Scholar] [CrossRef]
- Schiavon, S.; Cesaro, G.; Cecchinato, A.; Cipolat-Gotet, C.; Tagliapietra, F.; Bittante, G. The influence of dietary nitrogen reduction and conjugated linoleic acid supply to dairy cows on fatty acids in milk and their transfer to ripened cheese. J. Dairy Sci. 2016, 99, 8759–8778. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.; Rock, E.; Chamba, J.F.; Verdier-Metz, I.; Brachet, P.; Coulon, J.B. Respective effects of milk composition and the cheese-making process on cheese compositional variability in components of nutritional interest. Lait 2006, 86, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Cifre, J.; Rigo, A.; Gulías, J.; Rallo, J.; Joy, M.; Joy, S.; Mus, M.; Sánchez, F.; Ramón, J.; Ruiz, M.; et al. Caracterizaciò de les pastures de les Illes Balears. Quaderns dÍnvestigación 7; Conselleria d´Agricultura i Pesca, Ed.; Govern de les Illes Balears: Palma de Mallorca, Spain, 2007. [Google Scholar]
- AOAC. Association of Official Analytical Chemist. Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Delgado-Pertíñez, M.; Alcalde, M.J.; Guzmán-Guerrero, J.L.; Castel, J.M.; Mena, Y.; Caravaca, F. Effect of hygiene-sanitary management on goat milk quality in semi-extensive systems in Spain. Small Rumin. Res. 2003, 47, 51–61. [Google Scholar] [CrossRef]
- ISO/IDF. Cheese—Determination of Fat Content—Van Gulik Method; ISO 3433:2008 (IDF 222:2008); ISO: Genève, Switzerland, 2008. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Cunniff, P., Ed.; AOAC International: Washington, DC, USA, 1999. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- De la Haba Ruiz, M.; Ruiz Pérez-Cacho, P.; Dios Palomares, R.; Galan-Soldevilla, H. Classification of artisanal Andalusian cheeses on physicochemical parameters applying multivariate statistical techniques. Dairy Sci. Technol. 2016, 96, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, J.L.; Pérez-Écija, A.; Zarazaga, L.A.; Martín-García, A.I.; Horcada, A.; Delgado-Pertíñez, M. Using dried orange pulp in the diet of dairy goats: Effects on milk yield and composition and blood parameters of dams and growth performance and carcass quality of kids. Animal 2020, 14, 2212–2220. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agri. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Juárez, M.; Polvillo, O.; Contò, M.; Ficco, A.; Ballico, S.; Failla, S. Comparison of four extraction/methylation analytical methods to measure fatty acid composition by gas chromatography in meat. J. Chromatogr. A 2008, 1190, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Barbudo, M.C.; Granado-Lorencio, F.; Blanco-Navarro, I.; Olmedilla-Alonso, B. Retinol, α-and γ-tocopherol and carotenoids in natural and vitamin A- and E-fortified dairy products commercialized in Spain. Int. Dairy J. 2005, 15, 521–526. [Google Scholar] [CrossRef]
- Chauveau-Duriot, B.; Doreau, M.; Nozière, P.; Graulet, B. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: Validation of a novel UPLC method. Anal. Bioanal. Chem. 2010, 397, 777–790. [Google Scholar] [CrossRef]
- Gutiérrez-Peña, R.; Fernández-Cabanás, V.M.; Mena, Y.; Delgado-Pertíñez, M. Fatty acid profile and vitamins A and E contents of milk in goat farms under Mediterranean wood pastures as affected by grazing conditions and seasons. J. Food Compost. Anal. 2018, 72, 122–131. [Google Scholar] [CrossRef]
- Pellegrini, N.; Ke, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2 0-azinobis(3-ethylenebenzothiazoline-6-sulfonic acid) radical catión decolourisation assay. Meth. Enzymol. 1999, 299, 379–389. [Google Scholar]
- Delgado-Pertíñez, M.; Gutiérrez-Peña, R.; Mena, Y.; Fernández-Cabanás, V.M.; Laberye, D. Milk production, fatty acid composition and vitamin E content of Payoya goats according to grazing level in summer on Mediterranean shrublands. Small Rumin. Res. 2013, 114, 167–175. [Google Scholar]
- Revilla, I.; González-Martín, M.I.; Vivar-Quintana, A.M.; Blanco-López, M.A.; Lobos-Ortega, I.A.; Hernández-Hierro, J.M. Antioxidant capacity of different cheeses: Affecting factors and prediction by near infrared spectroscopy. J. Dairy Sci. 2016, 99, 5074–5082. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, C.V.; Rojas, M.G.; Ramirez, C.A.; Chávez-Servin, J.L.; García-Gasca, T.; Ferriz-Martínez, R.A.; Garcia, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I.; et al. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin-Ciocalteu method. Food Chem. 2015, 176, 480–486. [Google Scholar] [CrossRef]
- Guzmán, J.L.; Delgado Pertíñez, M.; Galán Soldevilla, H.; Ruiz Pérez-Cacho, P.; Polvillo Polo, O.; Zarazaga, L.Á.; Avilés Ramírez, C. Effect of citrus by-product on physicochemical parameters, sensory analysis and volatile composition of different kinds of cheese from raw goat milk. Foods 2020, 9, 1420. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, D.P.; Zamora, A.; Guamisa, B.; Rodríguez, M.; Trujillo, A.J. Cheesemaking aptitude of two Spanish dairy ewe breeds: Changes during lactation and relationship between physico-chemical and technological properties. Small Rumin. Res. 2008, 78, 48–55. [Google Scholar] [CrossRef]
- Estrada, O.; Ariño, A.; Juan, T. Salt Distribution in Raw Sheep Milk Cheese during Ripening and the Effect on Proteolysis and Lipolysis. Foods 2019, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Hernández, I.; Barrón, L.J.R.; Virto, M.; Pérez-Elortondo, F.J.; Flanagan, C.; Rozas, U.; Nájera, A.I.; Albisu, M.; Vicente, M.S.; de Renobales, M. Lipolysis, proteolysis and sensory properties of ewe’s raw milk cheese (Idiazabal) made with lipase addition. Food Chem. 2009, 116, 158–166. [Google Scholar] [CrossRef]
- Irigoyen, A.; Izco, J.M.; Ibáñez, F.C.; Torre, P. Influence of calf or lamb rennet on the physicochemical, proteolytic, and sensory characteristics of an ewes milk cheese. Int. Dairy J. 2002, 12, 27–34. [Google Scholar] [CrossRef]
- Cabezas, L.; Sánchez, I.; Poveda, J.M.; Seseña, S.; Palop, M.L.L. Comparison of microflora, chemical and sensory characteristics of artisanal Manchego cheeses from two dairies. Food Control 2007, 18, 11–17. [Google Scholar] [CrossRef]
- San Juan, E.; Millan, R.; Saavedra, P.; Carmona, M.A.; Gómez, R.; Fernandez-Salguero, J. Influence of animal and vegetable rennet on the physicochemical characteristics of Los Pedroches cheese during ripening. Food Chem. 2002, 78, 281–289. [Google Scholar] [CrossRef]
- Valdivielso, I.; Bustamante, M.A.; Aldezabal, A.; Amores, G.; Virto, M.; Ruíz de Gordoa, J.C.; de Renobales, M.; Barron, L.J.R. Case study of a commercial sheep flock under extensive mountain grazing: Pasture derived lipid compounds in milk and cheese. Food Chem. 2016, 197, 622–633. [Google Scholar] [CrossRef]
- De Man, J.M. Light-induced destruction of vitamin A in milk. J. Dairy Sci. 1981, 64, 2031–2032. [Google Scholar] [CrossRef]
- Poiffait, A.; Lietaer, E.; Le Pavec, P.; Adrian, J. Interrelations physico-chimiques et nutritionnelles entre la caséine et les vitamines liposolubles. Ind. Aliment. Agric. 1992, 109, 939–947. [Google Scholar]
- Bansal, V.; Mishra, S.K. Reduced-sodium cheeses: Implications of reducing sodium chloride on cheese quality and safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 733–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Oriente, S.F.; Barreto, F.; Tomaszewski, C.A.; Barnet, L.S.; Souza, N.C.; Oliveira, H.M.; de Bittencourt, M.A. Retention of vitamin A after goat milk processing into cheese: A nutritional strategy. J. Food Sci. Technol. 2020, 57, 4364–4370. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulou, I.; Zoidis, E.; Massouras, T.; Hadjigeorgiou, I. Terpenes transfer to milk and cheese after oral administration to sheep fed indoors. J. Anim. Physiol. Anim. Nutr. 2012, 96, 172–181. [Google Scholar] [CrossRef]
- Abd El-Gawad, M.A.M.; Ahmed, N.S. Cheese yield as affected by some parameters. Review. Acta Sci. Pol. Technol. Aliment. 2011, 10, 131–153. [Google Scholar]
- Chávez-Servín, J.L.; Andrade-Montemayor, H.M.; Velázquez Vázquez, C.; Aguilera Barreyro, A.; García-Gasca, T.; Ferríz Martínez, R.A.; Olvera Ramírez, A.M.; de la Torre-Carbot, K. Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Rumin. Res. 2018, 160, 54–58. [Google Scholar] [CrossRef]
- Nagy, S.; Rouseff, R.; Lee, H. Thermally degraded flavors in citrus juice products. ACS Symp. Ser. 1989, 409, 331–345. [Google Scholar]
- Chen, Y.; Yu, L.J.; Rupasinghe, H.P. Effect of thermal and non-thermal pasteurization on the microbial inactivation and phenolic degradation in fruit juice: A mini-review. J. Sci. Food Agric. 2013, 93, 981–986. [Google Scholar] [CrossRef]
- Di, T.A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di, G.A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar]
- Zulueta, A.; Maurizi, A.; Frígola, A.; Esteve, M.J.; Coli, R.; Burini, G. Antioxidant capacity of cow milk, whey and deproteinized milk. Int. Dairy J. 2009, 19, 380–385. [Google Scholar] [CrossRef]
- Virto, M.; Bustamante, M.; de Gordoa, J.C.R.; Amores, G.; Fernández-Caballero, P.N.; Mandaluniz, N.; Arranz, J.; Nájera, A.I.; Albisu, M.; Pérez-Elortondo, F.J.; et al. Interannual and geographical reproducibility of the nutritional quality of milk fat from commercial grazing flocks. J. Dairy Res. 2012, 79, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Abilleira, E.; Collomb, M.; Schlichtherle-Cerny, H.; Virto, M.; de Renobales, M.; Barron, L.J.R. Winter/Spring changes in fatty acid composition of farmhouse Idiazabal cheese due to different flock management systems. J. Agric. Food Chem. 2009, 57, 4746–4753. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, M.; Bittante, G. Detailed fatty acid profile of milk, cheese, ricotta and by products, from cows grazing summer highland pastures. J. Dairy Res. 2017, 84, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.D.; Calvo, M. Interaction of β-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: A review. J. Dairy Sci. 1995, 78, 978–988. [Google Scholar] [CrossRef]
- Martino, C.; Ianni, A.; Grotta, L.; Pomilio, F.; Martino, G. Influence of Zinc Feeding on Nutritional Quality, Oxidative Stability and Volatile Profile of Fresh and Ripened Ewes’ Milk Cheese. Foods 2019, 8, 656. [Google Scholar] [CrossRef] [Green Version]
- Molimard, P.; Spinnler, H.E. Review: Compounds involved in the flavour of surface mould-ripened cheeses: Origins and properties. J. Dairy Sci. 1996, 79, 169–184. [Google Scholar] [CrossRef]
- Gil, A.; Martínez de Victoria, E.; Olza, J. Indicators for the evaluation of diet quality. Nutr. Hosp. 2015, 31, 128–144. [Google Scholar]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and how meet n-3 PUFA dietary recommendations? A review. Gastroenterol. Res. Pract. 2011, 2011, 364040. [Google Scholar] [CrossRef] [Green Version]
- MacRae, J.; O’Reilly, L.; Morgan, P. Desirable characteristics of animal products from a human health perspective. Livest. Prod. Sci. 2005, 94, 95–103. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Lock, A.L.; Shingfield, K.J.; Bauman, D.E. Biosynthesis of conjugated linoleic acid in ruminants and humans. Adv. Food Nutr. Res. 2005, 50, 179–217. [Google Scholar]
- Ha, Y.L.; Grimm, N.K.; Pariza, M.W. Newly recognized anticarcinogenic fatty acids: Identification and quantification in natural and processed cheeses. J. Agric. Food Chem. 1989, 37, 75–81. [Google Scholar] [CrossRef]
- Shantha, N.C.; Decker, E.A. Conjugated linoleic acid concentrations in processed cheese containing hydrogen donors, iron and dairy based additives. Food Chem. 1993, 47, 257–261. [Google Scholar] [CrossRef]
- Shantha, N.C.; Decker, E.A.; Ustunol, Z. Conjugated linoleic acid concentration in processed cheese. J. Am. Oil Chem. Soc. 1992, 69, 425–428. [Google Scholar] [CrossRef]
- Buccioni, A.; Rapaccini, S.; Antongiovanni, M.; Minieri, S.; Conte, G.; Mele, M. Conjugated linoleic acid and C18:1 isomers content in milk fat of sheep and their transfer to Pecorino Toscano cheese. Int. Dairy J. 2010, 20, 190–194. [Google Scholar] [CrossRef]
- Avilez, J.P.; Wladimir, M.; Delgado-Pertiñez, M. Conjugated linoleic acid of dairy foods is affected by cow’s feeding system and processing of milk. Sci. Agric. 2016, 73, 103–108. [Google Scholar]
- Luna, P.; De la Fuente, M.A.; Juárez, M. Conjugated linoleic acid in processed cheeses during the manufacturing stages. J. Agric. Food Chem. 2005, 53, 2690–2695. [Google Scholar] [CrossRef] [Green Version]
- Luna, P.; Juárez, M.; De la Fuente, M.A. Conjugated linoleic acid content and isomer distribution during ripening in three varieties of cheeses protected with designation of origin. Food Chem. 2007, 103, 1465–1472. [Google Scholar] [CrossRef]
- Buchin, S.; Delague, V.; Duboz, G.; Berdague, J.L.; Beuvier, E.; Pochet, S.; Grappin, R. Influence of pasteurization and fat composition of milk on the volatile compounds and flavor characteristics of a semi-hard cheese. J. Dairy Sci. 1998, 81, 3097–3108. [Google Scholar] [CrossRef]
- McSweeney, P.; Sousa-Gallagher, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Ortigosa, M.; Torre, P.; Izco, J.M. Effect of pasteurization of ewe’s milk and use of a native starter culture on the volatile components and sensory characteristics of Roncal cheese. J. Dairy Sci. 2001, 84, 1320–1330. [Google Scholar] [CrossRef]
- Juan, B.; Barron, L.J.R.; Ferragut, V.; Trujillo, A.J. Effects of high pressure treatment on volatile profile during ripening of ewe milk cheese. J. Dairy Sci. 2007, 90, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Curioni, P.M.G.; Bosset, J.O. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Olarte, C. Caracterización del Queso de Cameros. Evolución de Parámetros Fisicoquímicos y Microbiológicos Durante su Maduración. Ph.D. Thesis, Univ. Rioja, La Rioja, Spain, 1999. [Google Scholar]
- Atasoy, A.F.; Hayaloglu, A.A.; Kırmacı, H.; Levent, O.; Türkoğlu, H. Effects of partial substitution of caprine for ovine milk on the volatile compounds of fresh and mature Urfa cheeses. Small Rumin. Res. 2013, 115, 113–123. [Google Scholar] [CrossRef]
- Karali, F.; Georgala, A.; Massouras, T.; Kaminarides, S. Volatile compounds and lipolysis levels of Kopanisti, a traditional Greek rawmilk cheese. J. Sci. Food Agric. 2013, 93, 1845–1851. [Google Scholar] [CrossRef]
- Quintanilla, P.; Hettinga, K.A.; Beltrán, M.C.; Escriche, I.; Molina, M.P. Short communication: Volatile profile of matured Tronchón cheese affected by oxytetracycline in raw goat milk. J. Dairy Sci. 2020, 103, 6015–6021. [Google Scholar] [CrossRef]
- Güler, Z. Profiles of organic acid and volatile compounds in acid-type cheeses containing herbs and spices (Surk cheese). Int. J. Food Prop. 2014, 17, 1379–1392. [Google Scholar] [CrossRef] [Green Version]
- Risner, D.; Tomasino, E.; Hughes, P.; Meunier-Goddik, L. Volatile aroma composition of distillates produced from fermented sweet and acid whey. J. Dairy Sci. 2019, 102, 202–210. [Google Scholar] [CrossRef] [Green Version]
Item | Chemical Composition (% Dry Matter, DM) | ||||
---|---|---|---|---|---|
DM | Crude Protein | Crude Fibre | Ether Extract | Ash | |
Husks and broken cereals | 88.8 | 17.4 | 8.50 | 2.24 | 6.57 |
Cereal mix (barley, 40%; oats, 40%; beans, 20%) | 89.8 | 13.3 | 10.3 | 2.94 | 2.58 |
Oat hay | 80.6 | 6.04 | 40.2 | 2.40 | 6.62 |
Barley straw | 91.7 | 3.70 | 38.2 | 1.62 | 7.63 |
Oat silage | 30.3 | 8.32 | 29.6 | 3.36 | 7.57 |
Item | Milk (n = 8) | Fresh Cheese (n = 8) | Ripened Cheese (n = 8) | |||
---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | |
Dry matter (DM) (%) | 19.5 | 0.39 | 47.5 | 1.3 | 64.2 | 0.78 |
Lactose (%) | 4.54 | 0.06 | ||||
Fat (%) | 7.47 | 0.31 | 24.1 | 1.2 | 29.6 | 2.4 |
Protein (%) | 6.57 | 0.18 | 14.6 | 0.34 | 25.6 | 0.33 |
Fat/DM (%) | 50.7 | 1.5 | 46.2 | 4.7 | ||
Ash (%) | 1.76 | 0.03 | 3.58 | 0.08 | ||
NaCl (%) | 1.16 | 0.09 | 1.04 | 0.07 | ||
pH | 6.54 | 0.03 | 5.27 | 0.03 |
Item 1 | Milk (M, n = 8) | Fresh Cheese (FC, n = 8) | Ripened Cheese (RC, n = 8) | P2 | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | M vs. FC | M vs. RC | FC vs. RC | |
Retinol, μg/100 g DM | 211.4 | 19.8 | 376.4 | 35.0 | 233.6 | 16.4 | * | ns | ** |
Retinol, μg/g fat | 5.56 | 0.45 | 7.89 | 0.77 | 5.45 | 0.58 | † | ns | ** |
α-Tocopherol, μg/100 g DM | 84.8 | 13.1 | 361.7 | 45.5 | 32.6 | 5.40 | ** | * | *** |
α-Tocopherol, μg/g fat | 2.26 | 0.37 | 7.58 | 0.97 | 0.81 | 0.14 | * | * | ** |
TPC, mg GA equivalents/100 g DM | 18.7 | 0.54 | 6.16 | 0.55 | 54.5 | 4.44 | *** | ** | *** |
TAC, μmol Trolox equivalents/g DM | 22.4 | 6.98 | 100.0 | 12.7 | 102.5 | 11.2 | * | ** | ns |
Item 1 | Milk (M, n = 8) | Fresh Cheese (FC, n = 8) | Ripened Cheese (RC, n = 8) | P2 | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | M vs. FC | M vs. RC | FC vs. RC | |
C4:0 | 3.46 | 0.43 | 5.57 | 0.35 | 5.36 | 0.44 | * | ** | ns |
C6:0 | 4.59 | 0.53 | 7.32 | 0.43 | 7.16 | 0.62 | ** | ** | ns |
C8:0 | 3.94 | 0.46 | 6.24 | 0.35 | 6.11 | 0.54 | ** | ** | ns |
C10:0 | 15.2 | 1.85 | 26.4 | 2.00 | 22.0 | 2.34 | * | * | † |
C11:0 | 0.29 | 0.03 | 0.45 | 0.05 | 0.38 | 0.03 | † | ns | ns |
C12:0 | 8.68 | 1.05 | 15.1 | 1.30 | 12.3 | 1.28 | * | * | ns |
C13:0 | 0.20 | 0.02 | 0.33 | 0.04 | 0.29 | 0.02 | * | * | ns |
C14:0 | 15.2 | 1.77 | 28.8 | 2.83 | 21.3 | 2.09 | * | † | † |
C14:1 | 0.62 | 0.07 | 1.25 | 0.15 | 0.87 | 0.08 | ** | * | * |
C15:0 | 1.39 | 0.16 | 2.73 | 0.30 | 1.93 | 0.17 | * | * | * |
C15:1 | 0.11 | 0.01 | 0.77 | 0.20 | 0.13 | 0.01 | ** | ns | *** |
C16:0 | 44.4 | 5.68 | 81.1 | 10.9 | 49.6 | 4.92 | * | ns | * |
C16:1 | 2.10 | 0.28 | 3.80 | 0.45 | 2.46 | 0.21 | * | ns | ** |
C17:0 | 0.93 | 0.11 | 1.72 | 0.21 | 1.28 | 0.17 | * | ns | † |
C17:1 | 0.56 | 0.10 | 1.24 | 0.18 | 0.61 | 0.06 | * | ns | *** |
C18:0 | 21.1 | 2.32 | 37.6 | 5.82 | 19.8 | 2.15 | † | ns | * |
C18:1 n-9 trans | 0.52 | 0.08 | 1.65 | 0.33 | 0.50 | 0.05 | * | ns | ** |
C18:1 n-11 trans (VA) | 1.98 | 0.22 | 3.47 | 0.51 | 1.79 | 0.17 | * | ns | ** |
C18:1 n-9 cis | 26.6 | 3.23 | 52.6 | 7.04 | 29.3 | 3.03 | * | ns | * |
C18:2 n-6 trans | 0.51 | 0.07 | 1.09 | 0.11 | 0.71 | 0.09 | * | ns | * |
C18:2 n-6 cis | 4.09 | 0.52 | 8.80 | 0.98 | 5.27 | 0.87 | * | ns | * |
γ-C18:3 n-6 | 0.11 | 0.02 | 0.31 | 0.05 | 0.31 | 0.04 | * | ** | ns |
α-C18:3 n-3 | 1.08 | 0.14 | 2.60 | 0.38 | 1.24 | 0.15 | * | ns | ** |
CLA cis-9, trans-11 (RA) | 0.99 | 0.08 | 1.87 | 0.23 | 1.34 | 0.11 | * | * | * |
CLA trans-10, cis-12 | 0.06 | 0.01 | 0.25 | 0.03 | 0.09 | 0.01 | * | ns | ** |
C20:0 | 0.35 | 0.04 | 0.17 | 0.03 | 0.12 | 0.01 | ** | ** | ns |
C20:1 n-9 | 0.14 | 0.01 | 0.14 | 0.01 | 0.11 | 0.02 | ns | ns | ns |
C20:2 | 0.11 | 0.02 | 0.21 | 0.02 | 0.12 | 0.01 | * | ns | ** |
C20:3 n-3 | 0.06 | 0.01 | 0.23 | 0.05 | 0.29 | 0.03 | ** | *** | ns |
C20:3 n-6 | 0.07 | 0.01 | 0.15 | 0.00 | 0.12 | 0.01 | ** | * | † |
C20:4 n-6 (ARA) | 1.17 | 0.17 | 2.59 | 0.33 | 0.99 | 0.11 | * | ns | ** |
C20:5 n-3 (EPA) | 0.31 | 0.03 | 0.42 | 0.09 | 0.26 | 0.03 | ns | ns | ns |
C21:0 | 0.05 | 0.00 | 0.14 | 0.02 | 0.06 | 0.01 | ** | ns | *** |
C22:0 | 1.44 | 0.40 | 2.83 | 0.70 | 0.85 | 0.11 | ns | ns | ** |
C22:1 n-9 | 0.10 | 0.01 | 0.16 | 0.01 | 0.13 | 0.02 | † | † | ns |
C22:2 | 0.06 | 0.01 | 0.08 | 0.01 | 0.03 | 0.00 | ns | ns | * |
C22:5 n-3 (DPA) | 0.44 | 0.04 | 0.81 | 0.11 | 0.41 | 0.04 | * | ns | ** |
C22:6 n-3 (DHA) | 0.23 | 0.03 | 0.51 | 0.12 | 0.19 | 0.02 | * | ns | ** |
C23:0 | 0.08 | 0.01 | 0.13 | 0.02 | 0.08 | 0.01 | ns | ns | ns |
C24:0 | 0.09 | 0.01 | 0.11 | 0.01 | 0.08 | 0.01 | ns | ns | ns |
C24:1 | 0.11 | 0.01 | 0.08 | 0.01 | 0.06 | 0.00 | * | † | ns |
SFA | 121.5 | 14.1 | 216.9 | 24.9 | 148.7 | 14.7 | * | ns | * |
MUFA | 32.9 | 3.91 | 65.2 | 8.75 | 36.0 | 3.51 | * | ns | ** |
PUFA | 9.32 | 1.03 | 19.9 | 2.37 | 11.4 | 1.31 | * | ns | ** |
SCFA | 27.2 | 3.10 | 45.6 | 2.99 | 40.6 | 3.86 | ** | * | ns |
MCFA | 74.5 | 9.16 | 137.3 | 16.4 | 91.2 | 8.97 | * | ns | * |
LCFA | 62.0 | 7.15 | 119.1 | 16.7 | 64.3 | 6.74 | * | ns | ** |
n-3 | 2.13 | 0.21 | 4.59 | 0.66 | 2.39 | 0.25 | * | ns | ** |
n-6 | 5.96 | 0.75 | 12.9 | 1.43 | 7.41 | 0.99 | * | ns | ** |
CLA total | 1.05 | 0.09 | 2.12 | 0.26 | 1.44 | 0.12 | * | * | * |
n-6/n-3 | 2.76 | 0.13 | 2.91 | 0.14 | 3.08 | 0.17 | ns | ns | ns |
MUFA/SFA | 0.27 | 0.01 | 0.30 | 0.01 | 0.24 | 0.00 | ns | * | *** |
PUFA/SFA | 0.08 | 0.00 | 0.09 | 0.00 | 0.08 | 0.00 | * | ns | *** |
AI | 2.71 | 0.08 | 2.52 | 0.08 | 3.11 | 0.02 | ns | * | *** |
TI | 3.08 | 0.09 | 2.78 | 0.05 | 3.11 | 0.02 | ns | ns | ** |
HPI | 0.37 | 0.01 | 0.40 | 0.01 | 0.32 | 0.00 | ns | * | *** |
Item 1 | Milk (M) | Fresh Cheese (FC) | Ripened Cheese (RC) | P2 | |||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | Mean | SEM | M vs. FC | M vs. RC | FC vs. RC | |
C4:0-C10:0 | 14.7 | 0.85 | 13.7 | 0.68 | 18.3 | 0.22 | ns | ** | ** |
C12:0 | 5.21 | 0.12 | 5.03 | 0.19 | 6.20 | 0.09 | * | ** | *** |
C14:0 | 9.46 | 0.05 | 9.83 | 0.30 | 11.1 | 0.11 | ns | ** | *** |
C16:0 | 27.9 | 0.68 | 27.4 | 0.44 | 26.3 | 0.06 | ns | † | ns |
C18:0 | 13.5 | 0.21 | 12.7 | 0.41 | 10.6 | 0.22 | † | *** | ** |
C18:1 n-9 cis | 16.9 | 0.55 | 18.00 | 0.21 | 15.6 | 0.08 | * | ns | *** |
CLA cis-9, trans-11 (RA) | 0.54 | 0.04 | 0.53 | 0.03 | 0.61 | 0.04 | ns | * | ns |
Others | 11.8 | 0.23 | 12.8 | 0.30 | 11.3 | 0.05 | ns | ns | ** |
SFA | 73.3 | 0.61 | 71.1 | 0.35 | 74.9 | 0.09 | * | ns | *** |
MUFA | 20.9 | 0.53 | 22.2 | 0.35 | 19.2 | 0.05 | * | † | *** |
PUFA | 5.78 | 0.18 | 6.67 | 0.08 | 5.87 | 0.14 | * | ns | ** |
n-3 | 1.36 | 0.07 | 1.54 | 0.06 | 1.26 | 0.03 | † | * | ** |
n-6 | 3.74 | 0.13 | 4.44 | 0.05 | 3.88 | 0.17 | * | ns | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Peña, R.; Avilés, C.; Galán-Soldevilla, H.; Polvillo, O.; Ruiz Pérez-Cacho, P.; Guzmán, J.L.; Horcada, A.; Delgado-Pertíñez, M. Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System. Foods 2021, 10, 80. https://doi.org/10.3390/foods10010080
Gutiérrez-Peña R, Avilés C, Galán-Soldevilla H, Polvillo O, Ruiz Pérez-Cacho P, Guzmán JL, Horcada A, Delgado-Pertíñez M. Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System. Foods. 2021; 10(1):80. https://doi.org/10.3390/foods10010080
Chicago/Turabian StyleGutiérrez-Peña, Rosario, Carmen Avilés, Hortensia Galán-Soldevilla, Oliva Polvillo, Pilar Ruiz Pérez-Cacho, José Luis Guzmán, Alberto Horcada, and Manuel Delgado-Pertíñez. 2021. "Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System" Foods 10, no. 1: 80. https://doi.org/10.3390/foods10010080
APA StyleGutiérrez-Peña, R., Avilés, C., Galán-Soldevilla, H., Polvillo, O., Ruiz Pérez-Cacho, P., Guzmán, J. L., Horcada, A., & Delgado-Pertíñez, M. (2021). Physicochemical Composition, Antioxidant Status, Fatty Acid Profile, and Volatile Compounds of Milk and Fresh and Ripened Ewes’ Cheese from a Sustainable Part-Time Grazing System. Foods, 10(1), 80. https://doi.org/10.3390/foods10010080