Application of Ultraviolet-Visible Absorption Spectroscopy with Machine Learning Techniques for the Classification of Cretan Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples
2.2. Instrumentation
2.3. Machine Learning Procedures
3. Results and Discussion
3.1. Discrimination of Grape Varieties
3.2. Discrimination of Wines According to Aging Time
3.3. Discrimination of Container Type
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chira, K.; Teissedre, P.L. Relation between volatile composition, ellagitannincontent and sensory perception of oak wood chips representing different toasting processes. Eur. Food Res. Technol. 2013, 236, 735–746. [Google Scholar] [CrossRef]
- Rosso, M.; Panighel, A.; Dalla Vedova, A.; Stella, L.; Flamini, R. Changes in chemical composition of a red wine aged in acacia, cherry, chestnut, mulberry, and oak wood barrels. J. Agric. Food Chem. 2009, 57, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.; Cancian, D.; Panighel, A.; Dalla Vedova, A.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- Koussissi, E.; Dourtoglou, V.G.; Ageloussis, G.; Dourtoglou, T.; Paraskeyopoulos, Y.; Paterson, A.; Chatzilazarou, A. Influence of toasting of oak chips on red wine maturation from sensory and gas chromatographic headspace analysis. Food Chem. 2009, 114, 1503–1509. [Google Scholar] [CrossRef]
- Arapitsas, P.; Antonopoulos, A.; Stefanou, E.; Dourtoglou, V.G. Artificial aging of wines using oak chips. Food Chem. 2004, 86, 563–570. [Google Scholar] [CrossRef]
- Dumitriu (Gabur), G.-D.; Teodosiu, C.; Gabur, I.; Cotea, V.V.; Peinado, R.A.; López de Lerma, N. Evaluation of Aroma Compounds in the Process of Wine Ageing with Oak Chips. Foods 2019, 8, 662. [Google Scholar] [CrossRef] [Green Version]
- Ibern-Gómez, M.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Lao-Luque, C.; Buxaderas, S.; Torre-Boronat, M.C.D. Differences in phenolic profile between oak wood and stainless steel fermentation in white wines. Am. J. Enol. Vitic. 2001, 52, 159–164. [Google Scholar]
- Sanza, M.D.A.; Escudero, J.A.F.; Torío, R.D.C. Changes in phenolic compounds and colour parameters of red wine aged with oak chips and in oak barrels. Food Sci. Tech. Int. 2004, 10, 233–241. [Google Scholar] [CrossRef]
- Gomez-Plaza, E.; Gil-Munoz, R.; Lopez-Roca, J.M.; Martınez, A. Color and phenolic compounds of a young red wine as discriminanting variables of its ageing status. Food Res. Int. 1999, 32, 503–507. [Google Scholar] [CrossRef]
- Gallego, L.; Del Alamo, M.; Nevares, I.; Fernandez, J.A.; de Simon, B.F.; Cadahia, E. Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (Quercus pyrenaica Willd). Food Sci. Technol. Int. 2012, 18, 151–165. [Google Scholar] [CrossRef]
- Cordella, C.; Moussa, I.; Martel, A.C.; Sbirrazzuoli, N.; Lizzani-Cuvelier, L. Recent developments in food characterization and adulteration detection: Technique-oriented perspectives. J. Agric. Food Chem. 2002, 50, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Bakogiannis, A.; Psarianos, C.; Koutinas, A.A.; Kanellaki, M.; Komaitis, M. High performance liquid chromatography analysis of phenolic substances in Greek wines. Food Control 2005, 16, 319–323. [Google Scholar] [CrossRef]
- Kallithraka, S.; Tsoutsouras, E.; Tzourou, E.; Lanaridis, P. Principal phenolic compounds in Greek red wines. Food Chem. 2006, 99, 784–793. [Google Scholar] [CrossRef]
- Baxter, M.J.; Crews, H.M.; Dennis, M.J.; Goodall, I.; Anderson, D. The determination of the authenticity of wine from its trace element composition. Food Chem. 1997, 60, 443–450. [Google Scholar] [CrossRef]
- Amargianitaki, M.; Spyros, A. NMR-based metabolomics in wine quality control and authentication. Chem. Biol. Technol. Agric. 2017, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Cassino, C.; Tsolakis, C.; Bonello, F.; Gianotti, V.; Osella, D. Wine evolution during bottle aging, studied by 1H NMR spectroscopy and multivariate statistical analysis. Food Res. Int. 2019, 116, 566–577. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Y.; Zhang, C.; Li, Y.; Bao, Y.; Liu, F. Discrimination of Grape Seeds Using Laser-Induced Breakdown Spectroscopy in Combination with Region Selection and Supervised Classification Methods. Foods 2020, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Basalekou, M.; Pappas, C.; Tarantilis, P.; Kotseridis, Y.; Kallithraka, S. Wine authentication with Fourier Transform Infrared Spectroscopy: A feasibility study on variety, type of barrel wood and ageing time classification. Int. J. Food Sci. Technol. 2017, 52, 1307–1313. [Google Scholar] [CrossRef]
- Revilla, I.; González-SanJosé, M.L. Effect of different oak woods on aged wine color and anthocyanin composition. Eur. Food Res. Technol. 2001, 213, 281–285. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Anthocyanin composition and colour characteristics of selected aged wines produced in Greece. J. Wine Res. 2002, 13, 23–34. [Google Scholar] [CrossRef]
- Azcarate, S.M.; Cantarelli, M.A.; Pellerano, R.G.; Marchevsky, E.J.; Camina, J.M. Classification of argentinean sauvignon blanc wines by UV spectroscopy and chemometric methods. J. Food Sci. 2013, 78, C432–C436. [Google Scholar] [CrossRef] [PubMed]
- Urbano, M.; De Castro, M.D.L.; Perez, P.M.; Garcia-Olmo, J.; Gomez-Nieto, M.A. Ultraviolet–visible spectroscopy and pattern recognition methods for differentiation and classification of wines. Food Chem. 2006, 97, 166–175. [Google Scholar] [CrossRef]
- Acevedo, F.J.; Jimenez, J.; Maldonado, S.; Dominguez, E.; Narvaez, A. Classification of wines produced in specific regions by UV-visible spectroscopy combined with support vector machines. J. Agric. Food Chem. 2007, 55, 6842–6849. [Google Scholar] [CrossRef] [PubMed]
- Airado-Rodriguez, D.; Duran-Meras, I.; Galeano-Diaz, T.; Wold, J.P. Front-face fluorescence spectroscopy: A new tool for control in the wine industry. J. Food Compos. Anal. 2011, 24, 257–264. [Google Scholar] [CrossRef]
- Suciu, R.C.; Zarbo, L.; Guyon, F.; Magdas, D.A. Application of fluorescence spectroscopy using classical right angle technique in white wines classification. Sci. Rep. 2019, 9, 18250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippidis, A.; Poulakis, E.; Basalekou, M.; Strataridaki, A.; Kallithraka, S.; Velegrakis, M. Characterization of Greek Wines by Ultraviolet–Visible Absorption Spectroscopy and Statistical Multivariate Methods. Anal. Lett. 2017, 50, 1950–1963. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EEC) No. 2676/90 determining Community methods for the analysis of wines. Off. J. Eur. Commun. 1990, 272, 1–192. [Google Scholar]
- Trygg, J.; Wold, S. Orthogonal Projection to Latent Structures (O-PLS). J. Chem. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration, 1st ed.; John Wiley & Sons: Chichester, UK; New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Roussis, I.G.; Lambropoulos, I.; Tzimas, P.; Gkoulioti, A.; Marinos, V.; Tsoupeis, D.; Boutaris, I. Antioxidant activities of some Greek wines and wine phenolic extracts. J. Food Compos. Anal. 2008, 21, 614–621. [Google Scholar] [CrossRef]
- Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high-performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.F.; Liazid, A.; Palma, M.; Puertas, B.; Gonzalez-Barrio, R.; Gil- Izquierdo, A.; Garcia-Barroso, C.; Cantos-Villar, E. Phenolic characterisation of red grapes autochthonous to Andalusia. Food Chem. 2009, 112, 949–955. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology Vol 2: The Chemistry of Wine Stabilization and Treatments; John Wiley and Sons: Chichester, UK, 2006; pp. 172–178. [Google Scholar]
- Kyraleou, M.; Kallithraka, S.; Chira, K.; Tzanakouli, E.; Ligas, I.; Kotseridis, Y. Differentiation of wines treated with wood chips based on their phenolic content, volatile composition, and sensory parameters. J. Food Sci. 2015, 80, C2701–C2710. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Fernández de Simón, B.; Esteruelas, E.; Ma Munoz, A.; Cadahía, E.; Hernández, M.T.; Estrella, I.; Martinez, J. Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta 2012, 732, 83–90. [Google Scholar] [CrossRef] [PubMed]
Dafni 2012 | Vilana 2012 | Dafni 2013 | Vilana 2013 | Vilana 2018 | |
---|---|---|---|---|---|
Predicted as Dafni 2012 | 15 | 0 | 1 | 0 | 0 |
Predicted as Vilana 2012 | 0 | 15 | 0 | 0 | 0 |
Predicted as Dafni 2013 | 0 | 0 | 19 | 0 | 1 |
Predicted as Vilana 2013 | 0 | 0 | 0 | 20 | 0 |
Predicted as Vilana 2018 | 0 | 0 | 0 | 0 | 9 |
Kotsifali 2012 | Mandilari 2012 | Kotsifali 2013 | Mandilari 2013 | Kotsifali 2018 | Mandilari 2018 | |
---|---|---|---|---|---|---|
Predicted as Kotsifali 2012 | 16 | 0 | 1 | 0 | 0 | 0 |
Predicted as Mandilari 2012 | 0 | 18 | 0 | 1 | 0 | 0 |
Predicted as Kotsifali 2013 | 2 | 0 | 23 | 0 | 0 | 0 |
Predicted as Mandilari 2013 | 0 | 0 | 0 | 22 | 0 | 1 |
Predicted as Kotsifali 2018 | 0 | 0 | 0 | 0 | 10 | 1 |
Predicted as Mandilari 2018 | 0 | 0 | 0 | 1 | 0 | 5 |
Kotsifali 3 Months | Kotsifali 6 Months | Kotsifali 9 Months | Kotsifali 12 Months | Mandilari 3 Months | Mandilari 6 Months | Mandilari 9 Months | Mandilari 12 Months | |
---|---|---|---|---|---|---|---|---|
Predicted as Kotsifali 3 months | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
Predicted as Kotsifali 6 months | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
Predicted as Kotsifali 9 months | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 |
Predicted as Kotsifali 12 months | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 |
Predicted as Mandilari 3 months | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
Predicted as Mandilari 6 months | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 |
Predicted as Mandilari 9 months | 0 | 0 | 0 | 0 | 1 | 2 | 5 | 0 |
Predicted as Mandilari 12 months | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
Stainless Steel | Acacia Wood | Oak Wood | |
---|---|---|---|
Predicted as Stainless Steel | 6 | 0 | 0 |
Predicted as Acacia Wood | 0 | 3 | 0 |
Predicted as Oak Wood | 0 | 0 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Philippidis, A.; Poulakis, E.; Kontzedaki, R.; Orfanakis, E.; Symianaki, A.; Zoumi, A.; Velegrakis, M. Application of Ultraviolet-Visible Absorption Spectroscopy with Machine Learning Techniques for the Classification of Cretan Wines. Foods 2021, 10, 9. https://doi.org/10.3390/foods10010009
Philippidis A, Poulakis E, Kontzedaki R, Orfanakis E, Symianaki A, Zoumi A, Velegrakis M. Application of Ultraviolet-Visible Absorption Spectroscopy with Machine Learning Techniques for the Classification of Cretan Wines. Foods. 2021; 10(1):9. https://doi.org/10.3390/foods10010009
Chicago/Turabian StylePhilippidis, Aggelos, Emmanouil Poulakis, Renate Kontzedaki, Emmanouil Orfanakis, Aikaterini Symianaki, Aikaterini Zoumi, and Michalis Velegrakis. 2021. "Application of Ultraviolet-Visible Absorption Spectroscopy with Machine Learning Techniques for the Classification of Cretan Wines" Foods 10, no. 1: 9. https://doi.org/10.3390/foods10010009
APA StylePhilippidis, A., Poulakis, E., Kontzedaki, R., Orfanakis, E., Symianaki, A., Zoumi, A., & Velegrakis, M. (2021). Application of Ultraviolet-Visible Absorption Spectroscopy with Machine Learning Techniques for the Classification of Cretan Wines. Foods, 10(1), 9. https://doi.org/10.3390/foods10010009