Effects of Red Rice or Buckwheat Addition on Nutritional, Technological, and Sensory Quality of Potato-Based Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pasta Cooking Conditions
2.2. Nutritional Quality Evaluation
2.3. Technological Quality Evaluation
2.4. Sensory Quality Evaluation
2.5. Data Analysis
3. Results and Discussion
3.1. Nutritional Quality
3.2. Technological Quality
3.3. Sensory Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lucisano, M.; Cappa, C.; Fongaro, L.; Mariotti, M. Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the cooking behaviour. J. Cereal Sci. 2012, 56, 667–675. [Google Scholar] [CrossRef]
- Mariotti, M.; Iametti, S.; Cappa, C.; Rasmussen, P.; Lucisano, M. Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. J. Cereal Sci. 2011, 53, 319–327. [Google Scholar] [CrossRef]
- Carini, E.; Curti, E.; Minucciani, M.; Antoniazzi, F.; Vittadini, E. Pasta. In Engineering Aspects of Cereal and Cereal-Based Products; Guiné, R.P.F., Correia, P.M.R., Eds.; CRC Press: Boca Raton, FL, USA, 2014; Chapter 10; pp. 211–238. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A. Reducing the glycaemic index and increasing the slowly digestible starch content in gluten-free cereal-based foods: A review. Int. J. Food Sci. Technol. 2018, 53, 50–60. [Google Scholar] [CrossRef]
- Friedel, J.; Glattes, H.; Schleining, G. Austrian dumplings. In Traditional Foods. General and Consumer Aspects; Kristbergsson, K., Oliveira, J., Eds.; Springer: New York, NY, USA, 2016; Chapter 10; pp. 139–156. [Google Scholar]
- Cappa, C.; Franchi, R.; Bogo, V.; Lucisano, M. Cooking behavior of frozen gluten-free potato-based pasta (gnocchi) obtained through turbo cooking technology. LWT Food Sci. Technol. 2017, 84, 464–470. [Google Scholar] [CrossRef]
- Burgos, V.E.; López, E.P.; Goldner, M.C.; Del Castillo, V.C. Physicochemical characterization and consumer response to new Andean ingredients-based fresh pasta: Gnocchi. Int. J. Gastron. Food Sci. 2019, 16, 100142. [Google Scholar] [CrossRef]
- Budryn, G.; Nebesny, E.; Rachwał-Rosiak, D.; Oracz, J. Fatty acids, essential amino acids, and chlorogenic acids profiles, in vitro protein digestibility and antioxidant activity of food products containing green coffee extract. Int. Food Res. J. 2013, 20, 2133–2144. [Google Scholar]
- Liu, T.; Hamid, N.; Yoo, M.J.Y.; Kantono, K.; Pereira, L.; Farouk, M.M.; Knowles, S.O. Physicochemical and sensory characterization of gnocchi and the effects of novel formulation on in vitro digestibility. J. Food Sci. Technol. 2016, 53, 4033–4042. [Google Scholar] [CrossRef] [Green Version]
- Lang, G.H.; Rockenbach, B.A.; Ferreira, C.D.; de Oliveira, M. Delayed drying interval of red rice: Effects on cooking properties, in vitro starch digestibility and phenolics content. J. Stor. Prod. Res. 2020, 87, 101613. [Google Scholar] [CrossRef]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The genetic basis and nutritional benefits of pigmented rice grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Kasunmala, I.G.G.; Navaratne, S.B.; Wickramasinghe, I. Effect of process modifications and binding materials on textural properties of rice noodles. Int. J. Gastron. Food Sci. 2020, 21, 100217. [Google Scholar] [CrossRef]
- Manaois, R.V.; Zapater, J.E.I.; Labargan, E.S.A. Nutritional qualities, antioxidant properties and sensory acceptability of fresh wheat noodles formulated with rice bran. Int. Food Res. J. 2020, 27, 308–315. [Google Scholar]
- Janssen, F.; Pauly, A.; Rombouts, I.; Jansens, K.J.A.; Deleu, L.J.; Delcour, J.A. Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective. Compr. Rev. Food Sci. Food Saf. 2017, 16, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- AACC (American Association of Cereal Chemists). Approved Methods of the AACC; n. 44-15.02; 08-01.01; 30-10.01; 46-12.01; 32-07.01, 10th ed.; AACC: St Paul, MN, USA, 2000. [Google Scholar]
- Rocklin, R.D.; Pohl, C.A. Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J. Liq. Chromatogr. 1983, 6, 1577–1590. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 16th ed.; AOAC: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Serpen, A.; Gökmen, V.; Pellegrini, N.; Fogliano, V. Direct measurement of the total antioxidant capacity of cereal products. J. Cereal Sci. 2008, 48, 816–820. [Google Scholar] [CrossRef]
- Englyst, K.N.; Englyst, H.N. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 1999, 69, 448–454. [Google Scholar] [CrossRef]
- Englyst, K.N.; Hudson, G.J. Starch analysis in Food. Encycl. Anal. Chem. 2000, 66, 4262–4264. [Google Scholar]
- ISO (International Organization for Standardization) 8589:2007. Sensory Analysis—General Guidance for the Design of Test Rooms; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Macfie, H.J.; Bratchell, N.K. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Sci. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Varela, P.; Ares, G. Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Res. Int. 2012, 48, 893–908. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R. Examination of sensory product characterization bias when check-all-that-apply (CATA) questions are used concurrently with hedonic assessments. Food Qual. Prefer. 2015, 40, 199–208. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C. Randomization of CATA attributes: Should attribute lists be allocated to assessors or to samples? Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- Laureati, M.; Cattaneo, C. Application of the check-all-that-apply method (CATA) to get insights on children’s drivers of liking of fiber-enriched apple purees. J. Sens. 2017, 32, e12253. [Google Scholar] [CrossRef]
- Meyners, M.; Castura, J.C.; Carr, B.T. Existing and new approaches for the analysis of CATA data. Food Qual. Prefer. 2013, 30, 309–319. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Martens, H.; Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression. Food Qual. Prefer. 2000, 11, 5–16. [Google Scholar] [CrossRef]
- Englyst, H.N.; Veenstra, J. Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycemic response. Br. J. Nutr. 1996, 75, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garsetti, M. The glycemic and insulinemic index of plain sweet biscuits: Relationships to in vitro starch digestibility. J. Am. Coll. Nutr. 2005, 24, 441–447. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of a health claim related to “slowly digestible starch in starch-containing foods” and “reduction of post-prandial glycaemic responses” pursuant to Article 13 of Regulation (EC) No 1924/20061. EFSA J. 2011, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Marti, A.; Abbasi Parizad, P.; Marengo, M.; Erba, D.; Pagani, M.A.; Casiraghi, M.C. In Vitro Starch Digestibility of Commercial Gluten-Free Pasta: The Role of Ingredients and Origin. J. Food Sci. 2017, 82, 1012–1019. [Google Scholar] [CrossRef]
- Carini, E.; Vittadini, E.; Curti, E.; Antoniazzi, F. Effects of different shaping modes on physico-chemical properties and water status of fresh pasta. J. Food Eng. 2009, 93, 400–406. [Google Scholar] [CrossRef]
- Alessandrini, L.; Balestra, F.; Romani, S.; Rocculi, P.; Rosa, M.D. Physicochemical and sensory properties of fresh potato-based pasta (Gnocchi). J. Food Sci. 2010, 75, S542–S547. [Google Scholar] [CrossRef] [PubMed]
- Hummel, C. Macaroni Products: Manufacture, Processing and Packing; Food Trade Press: London, UK, 1966. [Google Scholar]
- Alamprese, C.; Casiraghi, E.; Pagani, M.A. Development of gluten-free fresh egg pasta analogues containing buckwheat. Eur. Food Res. Technol. 2007, 225, 205–213. [Google Scholar] [CrossRef]
- Alamprese, C.; Iametti, S.; Rossi, M.; Bergonzi, D. Role of pasteurisation heat treatments on rheological and protein structural characteristics of fresh egg pasta. Eur. Food Res. Technol. 2005, 221, 759. [Google Scholar] [CrossRef]
- Fiorda, F.A.; Soares, M.S., Jr.; da Silva, F.A.; Grosmannb, M.V.E.; Souto, L.R.F. Amaranth flour, cassava starch and cassava bagasse in the production of gluten-free pasta: Technological and sensory aspects. Int. J. Food Sci. Technol. 2013, 48, 1977–1984. [Google Scholar] [CrossRef]
- Petitot, M.; Boyer, L.; Minier, C.; Micard, V. Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Res. Int. 2010, 43, 634–641. [Google Scholar] [CrossRef]
- Hemavathy, J.; Baht, K.K. Effect of particicle size on viscoamylographic behavior of rice flour and vermicelli quality. J. Texture Stud. 1994, 25, 469–476. [Google Scholar] [CrossRef]
- Nura, M.; Kharidah, M.; Jamilah, B.; Roselina, K. Textural properties of laksa noodle as affected by rice flour particle size. Int. Food Res. J. 2011, 18, 1309–1312. [Google Scholar]
- Laureati, M.; Giussani, B.; Pagliarini, E. Sensory and hedonic perception of gluten-free bread: Comparison between celiac and non-celiac subjects. Food Res. Int. 2012, 46, 326–333. [Google Scholar] [CrossRef]
- Woomer, J.S.; Akinbode, A.A. Current applications of gluten-free grains—A review. Crit. Rev. Sci. Nutr. 2021, 61, 14–24. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Del Nobile, M.A. Overview on the General Approaches to Improve Gluten-Free Pasta and Bread. Foods 2016, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Laureati, M.; Conte, A. Effect of fiber information on consumer’s expectation and liking of wheat bran enriched pasta. J. Sens. Stud. 2016, 31, 348–359. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
GF | GFR | GFB | C | CR | CB | |
---|---|---|---|---|---|---|
Moisture | 54.7 ± 0.2 bc | 58.1 ± 0.2 d | 56.6 ± 0.6 d | 53.3 ± 0.1 b | 51.1 ± 0.9 a | 54.7 ± 0.9 c |
Ash | 1.31 ± 0.04 a | 1.35 ± 0.19 a | 1.38 ± 0.14 ab | 1.14 ± 0.04 a | 1.68 ± 0.05 c | 1.67 ± 0.14 bc |
Lipids | 0.26 ± 0.01 a | 0.47 ± 0.06 b | 0.55 ± 0.04 b | 0.83 ± 0.06 c | 1.40 ± 0.10 e | 1.15 ± 0.07 d |
Proteins | 4.2 ± 0.4 a | 4.4 ± 0.2 a | 4.6 ± 0.3 ab | 6.4 ± 0.1 cd | 5.5 ± 0.3 bc | 6.6 ± 0.8 d |
Starch * | 40.3 ± 0.1 e | 36.6 ± 0.2 d | 31.2 ± 0.1 b | 33.9 ± 0.4 c | 34.5 ± 0.7 c | 29.5 ± 0.1 a |
Sugars | 0.26 ± 0.01 a | 0.34 ± 0.02 a | 0.36 ± 0.08 a | 4.70 ± 0.49 c | 2.77 ± 0.24 b | 2.66 ± 0.25 b |
TDF | 0.8 ± 0.3 a | 1.3 ± 0.3 ab | 6.0 ± 0.5 d | 1.7 ± 0.1 b | 1.8 ± 0.1 b | 4.8 ± 0.1 c |
IDF | 0.6 ± 0.1 a | 1.0 ± 0.3 a | 5.4 ± 0.4 c | 1.0 ± 0.2 a | 1.0 ± 0.2 a | 4.2 ± 0.2 b |
SDF | 0.2 ± 0.1 a | 0.3 ± 0.1 a | 0.7 ± 0.1 b | 0.7 ± 0.1 b | 0.8 ± 0.1 b | 0.6 ± 0.1 b |
TEAC | 2.13 ± 0.18 a | 3.46 ± 0.11 ab | 6.93 ± 1.22 c | 4.16 ± 0.66 b | 4.83 ± 0.37 b | 6.94 ± 0.09 c |
GF | GFR | GFB | C | CR | CB | |
---|---|---|---|---|---|---|
L* | 77.5 ± 2.3 c | 58.4 ± 1.4 b | 54.3 ± 3.2 a | 76.2 ± 1.7 c | 58.5 ± 2.9 b | 54.2 ± 2.3 a |
a* | −5.5 ± 0.5 b | 3.5 ± 0.2 e | 0.9 ± 0.2 d | −0.6 ± 0.4 a | 3.3 ± 0.9 e | 0.5 ± 0.3 c |
b* | 22.7 ± 2.3 d | 7.1 ± 0.6 b | 5.8 ± 1.0 a | 25.3 ± 1.6 e | 10.0 ± 0.8 c | 6.7 ± 0.8 ab |
Area (mm2) | 447.0 ± 46.3 a | 539.4 ± 62.6 c | 510.6 ± 66.6 bc | 442.4 ± 36.5 a | 491.7 ± 63.4 b | 534.2 ± 69.1 c |
Width (mm) | 18.7 ± 1.1 a | 22.0 ± 1.9 cd | 22.7 ± 2.6 d | 19.0 ± 1.0 a | 20.1 ± 1.8 b | 21.6 ± 1.6 c |
Length (mm) | 30.8 ± 2.5 ab | 32.1 ± 2.7 bc | 30.1 ± 2.8 a | 29.9 ± 2.1 a | 31.8 ± 2.7 bc | 32.7 ± 3.3 c |
GF | GFR | GFB | C | CR | CB | |
---|---|---|---|---|---|---|
L* | 69.6 ± 0.9 e | 52.2 ± 0.8 c | 44.7 ± 1.5 a | 64.3 ± 1.0 d | 51.7 ± 1.3 c | 47.1 ± 1.6 b |
a* | −6.7 ± 0.5 a | 4.4 ± 0.5 d | 1.5 ± 0.3 c | −6.3 ± 0.3 b | 4.8 ± 0.4 e | 1.3 ± 0.3 c |
b* | 21.7 ± 1.8 f | 8.1 ± 0.7 c | 5.1 ± 1.1 a | 20.2 ± 1.3 e | 10.0 ± 0.5 d | 6.9 ± 0.6 b |
Weight increase (g/100 g) | 12.1 ± 1 b | 14.2 ± 1 c | 11.4 ± 1 a | 11.5 ± 1 ab | 14.1 ± 1 c | 16.4 ± 1 d |
Solid loss (g/100 g) | 4.06 ± 0.51 a | 5.38 ± 1.23 b | 3.52 ± 0.70 a | 3.70 ± 0.60 a | 3.93 ± 0.61 a | 3.48 ± 0.73 a |
Hardness (N) | 408 ± 13 f | 108 ± 2 a | 243 ± 8 c | 336 ± 17 e | 200 ± 18 b | 262 ± 8 d |
CATA Items | Q | GF | GFR | GFB | C | CR | CB |
---|---|---|---|---|---|---|---|
Pleasant appearance | 84.1 | 79.2 | 38.5 | 50.0 | 84.4 | 62.5 | 50.0 |
Unpleasant appearance | 37.0 | 5.2 | 26.0 | 18.8 | 3.1 | 10.4 | 17.7 |
Pleasant taste | 43.4 | 65.6 | 47.9 | 44.8 | 80.2 | 65.6 | 55.2 |
Unpleasant taste | 55.1 | 1.0 | 18.8 | 26.0 | 1.0 | 5.2 | 13.5 |
Firm | 25.2 | 42.7 | 20.8 | 29.2 | 44.8 | 37.5 | 25.0 |
Coarse | 255.0 | 26.0 | 57.3 | 84.4 | 0.0 | 14.6 | 80.2 |
Rubbery to chew | 45.3 | 53.1 | 19.8 | 28.1 | 49.0 | 49.0 | 25.0 |
Soft to chew | 31.8 | 31.3 | 56.3 | 24.0 | 44.8 | 44.8 | 34.4 |
Grainy/pieces | 182.0 | 9.4 | 44.8 | 63.5 | 1.0 | 18.8 | 71.9 |
Adhesive/Sticks to theet | 139.9 | 14.6 | 71.9 | 29.2 | 12.5 | 58.3 | 18.8 |
Pleasant texture | 63.9 | 56.3 | 20.8 | 26.0 | 63.5 | 33.3 | 31.3 |
Unpleasant texture | 73.8 | 5.2 | 46.9 | 39.6 | 9.4 | 24.0 | 34.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappa, C.; Laureati, M.; Casiraghi, M.C.; Erba, D.; Vezzani, M.; Lucisano, M.; Alamprese, C. Effects of Red Rice or Buckwheat Addition on Nutritional, Technological, and Sensory Quality of Potato-Based Pasta. Foods 2021, 10, 91. https://doi.org/10.3390/foods10010091
Cappa C, Laureati M, Casiraghi MC, Erba D, Vezzani M, Lucisano M, Alamprese C. Effects of Red Rice or Buckwheat Addition on Nutritional, Technological, and Sensory Quality of Potato-Based Pasta. Foods. 2021; 10(1):91. https://doi.org/10.3390/foods10010091
Chicago/Turabian StyleCappa, Carola, Monica Laureati, Maria Cristina Casiraghi, Daniela Erba, Maurizio Vezzani, Mara Lucisano, and Cristina Alamprese. 2021. "Effects of Red Rice or Buckwheat Addition on Nutritional, Technological, and Sensory Quality of Potato-Based Pasta" Foods 10, no. 1: 91. https://doi.org/10.3390/foods10010091
APA StyleCappa, C., Laureati, M., Casiraghi, M. C., Erba, D., Vezzani, M., Lucisano, M., & Alamprese, C. (2021). Effects of Red Rice or Buckwheat Addition on Nutritional, Technological, and Sensory Quality of Potato-Based Pasta. Foods, 10(1), 91. https://doi.org/10.3390/foods10010091