Microbial Decontamination of Bee Pollen by Direct Ozone Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Bee Pollen
2.2. Microbiological Quality
2.3. Bee-Pollen Treatments
2.3.1. Hot-Air Dried Bee-Pollen Treatment
2.3.2. Bee-Pollen Exposed to Ozone Treatment
2.4. Evaluation of the Shelf-Life of Bee-Pollen Exposed to Ozone
2.5. Evaluation of Polyphenols Present in Bee-Pollen
2.6. Sensory Evaluation of Processed Bee-Pollen
2.7. Data Analysis
3. Results
3.1. Trial 1. Heat Treatment: Hot-Air Dried Bee-Pollen
3.2. Trial 2. Bee-Pollen Exposed to Ozone Treatment
3.3. Evaluation of the Shelf-Life of Bee-Pollen Treated Combining Hot-Air Drying (15 min) and Ozone Exposure (30 min)
3.4. Study of Changes on Polyphenols Present in Bee-Pollen after Treatment (Heat and Ozone) during 30 min
3.5. Sensory Evaluation of Processed Bee-Pollen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jean-Prost, P.; Médori, P.; Le Conte, Y. Apiculture: Connaître L’abeille, Conduire le Rucher.7 Édition Revue et Complétée; Éditions Tec & Doc: Paris, France, 2005; p. 698. [Google Scholar]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Campos, M.G.R.; Frigerio, C.; Lopes, J.; Bogdanov, S. What is the future of Bee-Pollen? J. ApiProduct ApiMedical Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Wright, G.A.; Nicolson, S.W.; Shafir, S. Nutritional Physiology and Ecology of Honey Bees. Annu. Rev. Entomol. 2018, 63, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Muniategui, S.; Sancho, T.; Terradillos, L.; Huidobro, J.; Simal-Lozano, J. Composición del polen apícola. Vida Apícola 1993, 59, 44–48. [Google Scholar]
- Bonvehí, J.S.; Jordà, R.E. Nutrient Composition and Microbiological Quality of Honeybee-Collected Pollen in Spain. J. Agric. Food Chem. 1997, 45, 725–732. [Google Scholar] [CrossRef]
- Yook, H.-S.; Lim, S.-I.; Byun, M.-W. Changes in Microbiological and Physicochemical Properties of Bee Pollen by Application of Gamma Irradiation and Ozone Treatment. J. Food Prot. 1998, 61, 217–220. [Google Scholar] [CrossRef]
- Hani, B.; Dalila, B.; Saliha, D.; Daoud, H.; Mouloud, G.; Seddik, K. Microbiological Sanitary Aspects of Pollen. Adv. Environ. Biol. 2012, 6, 1415–1420. [Google Scholar]
- Puig-Peña, Y.; del-Risco-Ríos, C.A.; Álvarez-Rivera, V.; Leiva-Castillo, V.; García-Neninger, R. Comparación de la calidad microbiológica del polen apícola fresco y después de un proceso de secado. CENIC Cienc. Biológicas 2012, 43, 23–27. [Google Scholar]
- Nardoni, S.; D’Ascenzi, C.; Rocchigiani, G.; Moretti, V.; Mancianti, F. Occurrence of moulds from bee pollen in Central Italy—A preliminary study. Ann. Agric. Environ. Med. 2015, 23, 103–105. [Google Scholar] [CrossRef] [Green Version]
- Hosny, A.S.; Sabbah, F.M.; EL-Bazza, Z.E. Studies on the microbial decontamination of Egyptian beepollen by γ radiation. Egypt. Pharm. J. 2018, 17, 190–200. [Google Scholar] [CrossRef]
- Mauriello, G.; De Prisco, A.; Di Prisco, G.; La Storia, A.; Caprio, E. Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps. PLoS ONE 2017, 12, e0183208. [Google Scholar] [CrossRef] [Green Version]
- Collin, S.; Vanhavre, T.; Bodart, E.; Bouseta, A. Heat Treatment of Pollens: Impact on Their Volatile Flavor Constituents. J. Agric. Food Chem. 1995, 43, 444–448. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Torrentó, M.S.; Lorente, E.C. Evaluation of Polyphenolic and Flavonoid Compounds in Honeybee-Collected Pollen Produced in Spain. J. Agric. Food Chem. 2001, 49, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Valhondo, D.; Gil, D.B.; Hernández, M.T.; González-Gómez, D. Influence of the commercial processing and floral origin on bioactive and nutritional properties of honeybee-collected pollen. Int. J. Food Sci. Technol. 2011, 46, 2204–2211. [Google Scholar] [CrossRef]
- Canale, A.; Benelli, G.; Castagna, A.; Sgherri, C.; Poli, P.; Serra, A.; Mele, M.; Ranieri, A.; Signorini, F.; Bientinesi, M.; et al. Microwave-Assisted Drying for the Conservation of Honeybee Pollen. Materials 2016, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Kaèániová, M.; Fikselová, M.; Hašèík, P.; Kòazovická, V.; Nôzková, J.; Fatrcová-Šrámková, K. Changes in microflora of bee pollen treated with uv light and freezing during storage. Ecol. Chem. Eng. A 2010, 17, 89–94. [Google Scholar]
- Kędzia, B.; Hołderna-Kędzia, E. The microbiological decontamination of pollen by using of ionizing radiation. Postępy Fitoter. 2010, 3, 152–156. [Google Scholar]
- Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W.H.; Awakowicz, P.; Leichert, L.I. Sterilization of beehive material with a double inductively coupled low pressure plasma. J. Phys. D Appl. Phys. 2016, 49, 374002. [Google Scholar] [CrossRef] [Green Version]
- Rice, R.G.; Graham, D.M. US FDA regulatory approval of ozone as an antimicrobial agent–what is allowed and what needs to be understood. Ozone News 2001, 29, 22–31. [Google Scholar]
- Rice, R.G.; Graham, D.M.; Lowe, M.T. Recent Ozone Applications in Food Processing and Sanitation. Food Saf. Mag. 2002, 8, 10–17. [Google Scholar]
- Beuchat, L.R.; Chmielewski, R.; Keswani, J.; Law, S.E.; Frank, J.F. Inactivation of aflatoxigenic Aspergilli by treatment with ozone. Lett. Appl. Microbiol. 1999, 29, 202–205. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Kroyer, G.; Hegedus, N. Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innov. Food Sci. Emerg. Technol. 2001, 2, 171–174. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Rodrigues, S.; Pereira, A.P.; Feás, X. Portuguese bee pollen: Palynological study, nutritional and microbiological evaluation. Int. J. Food Sci. Technol. 2011, 47, 429–435. [Google Scholar] [CrossRef]
- Serra Bonvehí, J.; Gómez Pajuelo, A. La calificación de mieles mediante el análisis organoléptico. Apiacta 1988, 23, 103–108. [Google Scholar]
- Baldi Coronel, B.; Grasso, D.; Chaves Pereira, S.; Fernández, G. Caracterización bromatológica del polen apícola argentino. Cienc. Docencia Tecnol. 2004, 15, 145–181. [Google Scholar]
- Cook, N.C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- González, G.; Hinojo, M.J.; Mateo, R.; Medina, A.; Jiménez, M. Occurrence of mycotoxin producing fungi in bee pollen. Int. J. Food Microbiol. 2005, 105, 1–9. [Google Scholar] [CrossRef]
- De Arruda, V.A.S.; Dos Santos, A.V.; Sampaio, D.F.; Araújo, E.D.S.; Peixoto, A.L.D.C.; Estevinho, M.L.M.F.; de Almeida-Muradian, L.B. Microbiological quality and physicochemical characterization of Brazilian bee pollen. J. Apic. Res. 2017, 56, 231–238. [Google Scholar] [CrossRef]
- Gliński, Z.; Jarosz, J. Mikroflora pszczoły miodnej. Post Mikrobiol. 1988, 27, 95–107. [Google Scholar]
- Almaraz-Abarca, N.; Campos, M.G.; Ávila-Reyes, J.A.; Naranjo Jiménez, N.; Herrera-Corral, J.; González-Valdez, L.S. Vari-ability of antioxidant activity among honey bee-collected pollen of different botanical origin. J. Sci. Technol. Am. 2004, 29, 574–578. [Google Scholar]
- Kim, J.-G.; Yousef, A.E.; Dave, S. Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef] [PubMed]
Hot-Air Drying | Ozone | Combination | |||||||
---|---|---|---|---|---|---|---|---|---|
Statistic | df | Sig | Statistic | df | Sig | Statistic | df | Sig | |
Enterobacteriaceae | 0.473 | 40 | 0.000 | 0.164 | 80 | 0.000 | 0.290 | 30 | 0.000 |
Enterobacteriaceae reduction percentage | 0.616 | 40 | 0.000 | 0.691 | 80 | 0.000 | 0.642 | 30 | 0.000 |
Mesophillic aerobes | 0.549 | 40 | 0.000 | 0.153 | 80 | 0.000 | 0.362 | 30 | 0.000 |
Mesophillic aerobes reduction percentage | 0.873 | 40 | 0.000 | 0.761 | 80 | 0.000 | 0.898 | 30 | 0.008 |
Moulds & yeasts reduction percentage | 0.785 | 40 | 0.000 | 0.688 | 80 | 0.000 | 0.831 | 30 | 0.000 |
Microbiological Group | Hot-Air Dried Timing | N | Counting (log CFU/g) (Mean ± S.D.) | % Reduction of Contamination (Mean ± S.D.) * |
---|---|---|---|---|
Enterobacteriace | Without treatment | 10 | 5.39 ± 5.34 | 0.0 ± 0.0 a |
15 min | 10 | 3.83 ± 3.66 | 93.8 ± 7.4 b | |
30 min | 10 | 3.93 ± 4.07 | 96.1 ± 3.8 b | |
45 min | 10 | 3.77 ± 4.02 | 96.9 ± 5.0 b | |
Mesophillic aerobes | Without treatment | 10 | 4.83 ± 4.82 | 0.0 ± 0.0 a |
15 min | 10 | 4.31 ± 4.33 | 53.0 ± 55.7 b | |
30 min | 10 | 4.09 ± 3.91 | 67.2 ± 35.3 b | |
45 min | 10 | 4.16 ± 3.86 | 59.1 ± 33.2 b | |
Moulds & yeasts | Without treatment | 10 | 7.54 ± 7.75 | 0.0 ± 0.0 a |
15 min | 10 | 5.89 ± 5.87 | 78.0 ± 32.5 b | |
30 min | 10 | 5.97 ± 5.94 | 70.3 ± 45.8 b | |
45 min | 10 | 5.89 ± 5.83 | 80. 8 ± 27.2 b |
Microbiological Group | Ozone Exposure Timing | N | Counting (log CFU/g) (Mean ± S.D.) | % Reduction of Contamination (Mean ± S.D.) * |
---|---|---|---|---|
Enterobacteriaceae | Without treatment | 20 | 6.91 ± 7.36 | 0.0 ± 0.0 a |
30 min | 20 | 4.94 ± 5.02 | 80.0 ± 6.6 b | |
60 min | 20 | 4.61 ± 4.67 | 90.9 ± 3.0 b | |
Mesophillic aerobes | Without treatment | 20 | 6.31 ± 6.80 | 0.0 ± 0.0 a |
30 min | 20 | 4.97 ± 5.16 | 69.1 ± 8.1 b | |
60 min | 20 | 4.73 ± 4.95 | 83.1 ± 5.0 b | |
Moulds & yeasts | Without treatment | 20 | 8.88 ± 9.30 | 0.0 ± 0.0 a |
30 min | 20 | 6.32 ± 6.31 | 89.5 ± 4.4 b | |
60 min | 20 | 6.29 ± 6.54 | 89.4 ± 4.2 b |
Enterobacteriaceae | Mesophillic Aerobes | Moulds & Yeasts | ||||
---|---|---|---|---|---|---|
N | (mean ± S.D.) * | N | (mean ± S.D.) * | N | (mean ± S.D.) * | |
b.t. 1 | 18 | 6.78 ± 7.15 a | 18 | 6.02 ± 6.54 a | 18 | 8.39 ± 8.82 a |
Just a.t. 2 | 18 | 4.03 ± 4.54 b | 18 | 4.16 ± 4.44 b | 18 | 5.81 ± 6.06 b |
1 week a.t. 2 | 18 | 3.99 ± 4.30 c | 18 | 4.56 ± 4.83 b,c | 18 | 6.63 ± 7.07 b,c |
2 weeks a.t. 2 | 18 | 4.42 ± 4.64 d | 18 | 4.39 ± 4.70 b | 18 | 6.90 ± 7.29 c,d |
3 weeks a.t. 2 | 18 | 4.55 ± 4.80 e,f | 18 | 4.77 ± 5.11 b | 18 | 6.92 ± 7.28 c,d |
6 weeks a.t. 2 | 17 | 5.37 ± 5.77 e,f | 17 | 4.98 ± 5.15 c | 17 | 7.05 ± 7.33 d |
Polyphenols | Caffeic | Chrysin | Kaempher | Luteolin | Naringerin | P-Coumaric | Quercetin | Rutin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± S.D. | N | Mean ± S.D. | N | Mean ± S.D. | N | Mean ± S.D. | N | Mean ± S.D. | N | Mean ± S.D. | N | Mean ± S.D. | N | Mean ± S.D. | |
Fresh Pollen | 5 | 3.3 ± 2.3 | 3 | 4.5 ± 4.5 | 5 | 1.9 ± 0.5 | 5 | 63.1 ± 41.9 | 4 | 2.1 ± 1.1 | 5 | 7.1 ± 4.8 | 5 | 7.5 ± 1.9 | 5 | 6.7 ± 2.7 |
Dried Pollen | 5 | 3.7 ± 1.8 | 3 | 4.4 ± 3.7 | 5 | 1.6 ± 0.8 | 5 | 70.6 ± 47.7 | 4 | 2.7 ± 0.9 | 5 | 7.1 ± 4.4 | 5 | 7.7 ± 1.4 | 5 | 6.3 ± 2.9 |
Ozonize Pollen | 5 | 3.5 ± 2.1 | 3 | 6.0 ± 4.7 | 5 | 1.7 ± 0.4 | 5 | 86.3 ± 70.7 | 4 | 2.6 ± 1.9 | 5 | 7.8 ± 5.4 | 5 | 7.9 ± 2.6 | 5 | 6.6 ± 2.7 |
Bee-Pollen Type | Sensory Profile |
---|---|
Fresh (untreated) | Intense (5) odour (vegetation/green); grains change their shape when pressing with the fingers and combine together in one mass, pollen dust is observed, very wet in mouth, sweet, bitter, slightly salted, and lightly acid. Medium (3) flavor (vegetation/green/humidity, floral) and medium (3) persistence. |
15′ Dried pollen | Intense (5) odor (vegetation/green); grains change their shape when pressing with the fingers but not combine together in one mass, no pollen dust is observed; wet in mouth, sweet, and slightly salted. Medium (3) flavor (vegetal/green/roasted) and short (2) persistence. |
30′ Dried pollen | Medium (3) odor (vegetation/green); grains change their shape when pressing with the fingers but not combine together in one mass, no pollen dust is observed; wet in mouth, sweet and slightly salted. Soft (2) flavor (vegetation/green/roasted) and short (2) persistence. |
45′ Dried pollen | Medium (3) odor (vegetation/green); grains change their shape when pressing with the fingers, no pollen dust is observed; dry in mouth, slightly salted. Very soft (1) flavor (vegetation/green/roasted) and short (2) persistence. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabello, J.R.; Serrano, S.; Rodríguez, I.; García-Valcárcel, A.I.; Hernando, M.D.; Flores, J.M. Microbial Decontamination of Bee Pollen by Direct Ozone Exposure. Foods 2021, 10, 2593. https://doi.org/10.3390/foods10112593
Cabello JR, Serrano S, Rodríguez I, García-Valcárcel AI, Hernando MD, Flores JM. Microbial Decontamination of Bee Pollen by Direct Ozone Exposure. Foods. 2021; 10(11):2593. https://doi.org/10.3390/foods10112593
Chicago/Turabian StyleCabello, Juan Ramón, Salud Serrano, Inmaculada Rodríguez, Ana Isabel García-Valcárcel, María Dolores Hernando, and José Manuel Flores. 2021. "Microbial Decontamination of Bee Pollen by Direct Ozone Exposure" Foods 10, no. 11: 2593. https://doi.org/10.3390/foods10112593
APA StyleCabello, J. R., Serrano, S., Rodríguez, I., García-Valcárcel, A. I., Hernando, M. D., & Flores, J. M. (2021). Microbial Decontamination of Bee Pollen by Direct Ozone Exposure. Foods, 10(11), 2593. https://doi.org/10.3390/foods10112593